Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 141: Nhắc lại khái niệm giá trị lượng giác của góc α, 0o ≤ α ≤ 180o.
Ta có thể mở rộng khái niệm giá trị lượng giác cho các cung và góc lượng giác.
Lời giải
Các số sinα; cosα; tanα; cotα được gọi là giá trị lượng giác của góc α, với 0o ≤ α ≤ 180o.
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 142: Tính sin 25π/4, cos(-240o), tan(-405o).
Lời giải
sin 25π/4 = sin(6π + π/4) = sin π/4 = √2/2
cos(-240° ) = cos(-360° + 120°) = cos 120°= - 1/2
tan(-405o ) = tan(-360o - 45o) = -tan45o = -1
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 143: Từ định nghĩa của sinα và cosα, hãy phát biểu ý nghĩa hình học của chúng.
Lời giải
Xét điểm M thuộc đường tròn lượng giác xác định bởi số α .
Gọi H và K theo thứ tự là hình chiếu vuông góc của điểm M trên trục Ox và Oy. Khi đó:
cosα = OH¯; sinα = OK¯
Trong lượng giác, người ta gọi trục Ox là trục cô sin và trục Oy là trục sin .
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 145: Từ ý nghĩa hình học của tanα và cotα hãy suy ra với mọi số nguyên k, tan(α + kπ) = tanα, cot(α + kπ) = cotα.
Lời giải
Trên đường tròn lượng giác,từ A(1,0) vẽ tiếp tuyến t’At với đường tròn lượng giác.
Từ B(0,1) vẽ tiếp tuyến s’Bs với đường tròn lượng giác .
Cho cung lượng giác AM có số đo α (α ≠ π/2 + kπ ). Gọi T là giao điểm của OM với trục t’At.
Gọi S là giao điểm của OM và trục s’Bs.
Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm T trên trục tan. Do đó
tan(α + kπ) = tanα.
Khi β = α + kπ thì điểm cuối của góc β sẽ trùng với điểm S trên trục cot. Do đó
cot(α + kπ) = cotα.
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 145: Từ định nghĩa của sinα, cosα. Hãy chứng minh hằng đẳng thức đầu tiên, từ đó suy ra các hằng đẳng thức còn lại.
Lời giải
cosα = OH¯; sinα = OK¯
Do tam giác OMK vuông tại K nên:
sin2 α + cos2 α = OK¯2 + OH¯2 = OK2 + MK2 = OM2 = 1.
Vậy sin2 α + cos2 α = 1.
Trả lời câu hỏi Toán 10 Đại số Bài 2 trang 148: Tính cos(-11π/4), tan31π/6, sin(-1380o).
Lời giải
Bài 1 (trang 148 SGK Đại Số 10): Có cung α nào mà sinα nhận các giá trị tương ứng sau đây không ?
Lời giải
Ta có: -1 ≤ sin α ≤ 1 với mọi α ∈ R.
a) Vì -1 < –0,7 < 1 nên tồn tại cung α thỏa mãn sin α = -0,7.
Trên trục tung xác định điểm K sao cho
Từ K kẻ đường thẳng vuông góc với trục tung cắt đường tròn lượng giác tại hai điểm M1 và M2.
Khi đó với thì theo định nghĩa sin α =
b) Vì 4/3 > 1 nên không tồn tại α để sin α = 4/3.
c) Vì -√2 < -1 nên không tồn tại α để sin α = -√2.
d) Vì √5/2 > 1 nên không tồn tại α để sin α = √5/2
Kiến thức áp dụng
+ Định nghĩa sin của cung α:
Cung có sđ
= α. K là hình chiếu của điểm M trên trục tung.
Khi đó ta định nghĩa
( là độ dài đại số của OK và chính là tung độ của điểm M).
+ Với mọi α ∈ R thì -1 ≤ sin α ≤ 1.
Bài 2 (trang 148 SGK Đại Số 10): Các đẳng thức sau đây có thể đồng thời xảy ra không ?
Lời giải
Kiến thức áp dụng
Bài 3 (trang 148 SGK Đại Số 10): Cho 0 < α < π/2. Xác định dấu của các giá trị lượng giác
Lời giải
Vì 0 < α < π/2 nên sin α > 0, cos α > 0, tan α > 0, cot α > 0.
Cách 1: Dựa vào mối quan hệ giữa các giá trị lượng giác của các cung có liên quan đặc biệt
a) sin (α – π) = - sin (π – α) (Áp dụng công thức sin (- α) = - sin α)
= -sin α (Áp dụng công thức sin (π – α) = sin α)
Mà sin α > 0 nên sin (α – π) < 0.
c) tan (α + π) = tan α.
Mà tan α > 0 nên tan (α + π) > 0.
Cách 2: Dựa vào biểu diễn cung trên đường tròn lượng giác:
Vì 0 < α < π/2 nên ta biểu diễn α = sđ như trên hình vẽ.
Bài 4 (trang 148 SGK Đại Số 10): Tính các giá trị lượng giác của góc α nếu
Lời giải
Kiến thức áp dụng
Bài 5 (trang 148 SGK Đại Số 10): Tính α, biết
Lời giải
a) cos α = 1 ⇔ M trùng với A hay α = k.2π, k ∈ Z.
b) cos α = -1 ⇔ M trùng với A’ hay α = π + k.2π, k ∈ Z
c) cos α = 0 ⇔ M trùng với B hoặc B’ hay α = π/2 + k.π, k ∈ Z
d) sin α = 1 ⇔ M trùng với B hay α = π/2 + k.2π, k ∈ Z
e) sin α = -1 ⇔ M trùng với B’ hay α = -π/2 + k.2π, k ∈ Z
f) sin α = 0 ⇔ M trùng với A hoặc A’ hay α = k.π, k ∈ Z
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 10 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 10 khác nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét