Bài 1 (trang 18 SGK Hình học 12): Cắt bìa theo mẫu dưới đây (h.123), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều.
Lời giải:
Bài 2 (trang 18 SGK Hình học 12): Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Lời giải:
Gọi a là cạnh của hình lập phương ABCD.A1B1C1D1;
⇒ Diện tích toàn phần của hình lập phương (H) là: SH = 6.a2 (đvdt).
Gọi tâm các mặt lần lượt là E, F, M, N, P, Q như hình vẽ.
⇒ (H’) là bát diện đều EMNPQF.
+ Áp dụng định lí pytago vào tam giác vuông AA’D ⇒ A’D = a√2
+ EM là đường trung bình của ΔBA’D
⇒ (H’) là bát diện đều gồm 8 mặt là các tam giác đều cạnh bằng
⇒ Diện tích một mặt của (H’) là:
⇒ Diện tích toàn phần của (H’) là:
Vậy tỉ số diện tích cần tính là:
Bài 3 (trang 18 SGK Hình học 12): Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một tứ diện đều.
Lời giải:
Xét tứ diện đều A.BCD cạnh bằng a. Gọi G1, G2, G3 và G4 lần lượt là tâm của các tam giác BCD, ACD, ABD và ABC.
Gọi M là trung điểm của BC.
Xét tam giác AMD có:
Tương tự ta có: G1G2 =G2G3 = G3G4 = G1G3 = G1G4 = G2G4 =
Tâm các mặt của tứ diện đều ABCD tạo thành tứ diện G1G2G3G4 có độ dài mỗi cạnh là
Vậy tứ diện G1G2G3G4 là tứ diện đều.
Bài 4 (trang 18 SGK Hình học 12): Cho hình bát diện đều ABCDEF.
Chứng minh rằng:
a)Các đoạn thẳng AF, BD và CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
b)ABFD, AEFC và BCDE là những hình vuông.
Lời giải:
Giả sử bát diện đều ABCDEF có cạnh bằng a.
a) B, C, D, E cách đều A và F suy ra B, C, D, E cùng nằm trên mặt phẳng trung trực của đoạn thẳng AF
Trong mp (BCDE), ta có BC = CD = DE = EB (= a)
⇒ BCDE là hình thoi
⇒ BD ⊥ EC và BD, EC cắt nhau tại trung điểm mỗi đường.
Chứng minh tương tự ta suy ra AF và BD, AF và CE vuông góc nhau và cắt nhau tại trung điểm mỗi đường.
b) Gọi trung điểm BD, CE, AF là O.
Mà AB = AE (= a) ⇒ BO = OE ⇒ BD = EC
⇒ Hình thoi BCDE là hình vuông.
Chứng minh tương tự: ABFD, AEFC đều là hình vuông.
Chú ý : Hình thoi có hai đường chéo bằng nhau là hình vuông.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét