Thứ Hai, 3 tháng 8, 2020

Cấp số cộng - soanbaitap.com

Bài 1 (trang 97 SGK Đại số 11): Trong các dãy số (un) sau đây, dãy số nào là cấp số cộng? Tính số hạng đầu và công sai của nó.

Giải bài tập Đại số 11 | Để học tốt Toán 11

Lời giải:

a. Vì un = 5 – 2n nên u1 = 5 – 2 = 3

Xét hiệu sau:

un+1 – un = [5 – 2(n + 1)] – (5 - 2n) = 5 – 2n – 2 – 5 + 2n = -2

⇒ un+1 = un – 2

Vậy (un) là cấp số cộng với công sai d = - 2

Giải bài tập Đại số 11 | Để học tốt Toán 11

c. un = 3n ⇒ u1 = 3

giả sử n ≥ 1, xét hiệu sau:

un+1 – un = 3n+1 – 3n = 3n . 3 – 3n = (3 - 1).3n = 2.3n

và un – un-1 = 3n – 3n-1 = 3.3n-1 - 3n-1 = (3- 1).3n-1 = 2.3n-1

⇒ un+1 – un ≠ un – un– 1 (vì 3n ≠ 3n-1, ∀ n )

⇒ (un) không phải là cấp số cộng.

Giải bài tập Đại số 11 | Để học tốt Toán 11

Bài 2 (trang 97 SGK Đại số 11): Tìm số hạng đầu và công sai của các cấp số cộng sau, biết:

Giải bài 2 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Lời giải:

a) Ta có : u3 = u+ 2d ;

u5 = u1 + 4d ;

u6 = u1 + 5d

Theo đề bài ta có :

Giải bài 2 trang 97 sgk Đại số 11 | Để học tốt Toán 11

b. Ta có: u7 = u1 + 6d ; u= u1 + 2d ; u2 = u+ d

Do đó theo đề bài ta có:

Giải bài 2 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Kiến thức áp dụng

Cấp số cộng (un) có số hạng đầu u1; công sai d thì có số hạng thứ n :

un = u1 + (n – 1).d

Bài 3 (trang 97 SGK Đại số 11): Trong các bài toán về cấp số cộng, ta thường gặp năm đại lượng u1, d, n, un, Sn.

a.Hãy viết các hệ thức liên hệ giữa các đại lượng đó. Cần phải biết ít nhất mấy đại lượng để có thể tìm được các đại lượng còn lại?

b.Lập bảng theo mẫu sau và điền vào số thích hợp vào ô trống:

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Lời giải:

a. Mối liên hệ giữa các công thức:

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Dựa vào các công thức trên thấy cần phải biết ít nhất 3 đại lượng để tìm được các đại lượng còn lại.

b. Ta có bảng:

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Giải thích:

+ Với u1 = -2; un = 55; n = 20

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

+ Với d = -4 ; n = 15 ; Sn = 120

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11 Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

+ Với un = 17; n = 12; Sn = 72

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

+ Với u1 = 2; d = -5; Sn = -205.

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

⇒ un = u10 = u1 + 9d = -43.

Kiến thức áp dụng

+ Cấp số cộng (un) có số hạng đầu u1; công sai d thì :

Giải bài 3 trang 97 sgk Đại số 11 | Để học tốt Toán 11

Bài 4 (trang 98 SGK Đại số 11): Mặt sàn tầng một ngôi nhà cao hơn mặt sân 0,5m. Cầu thang đi từ tầng một lên tầng hai gồm 21 bậc, mỗi bậc cao 18cm.

a. Viết công thức để tìm độ cao của một bậc tùy ý so với mặt sân.

b. Tính độ cao của sàn tầng hai so với mặt sân.

Lời giải:

a. Mỗi bậc thang cao 18cm = 0,18m.

⇒ n bậc thang cao 0,18.n (m)

Vì mặt bằng sàn cao hơn mặt sân 0,5m nên công thức tính độ cao của bậc n so với mặt sân sẽ là:

hn = (0, 5 + 0,18n) (m)

b. Độ cao của sàn tầng hai so với mặt sân ứng với n = 21 là:

h21 = 0,5 + 0,18.21 = 4,28 (m)

Bài 5 (trang 98 SGK Đại số 11): Từ 0 đến 12 giờ trưa, đồng hồ đánh bao nhiêu tiếng, nếu có chỉ đánh chuông báo giờ và số tiếng chuông bằng tiếng giờ?

Lời giải:

Lúc 1 giờ đồng hồ đánh 1 tiếng chuông.

Lúc 2 giờ đồng hồ đánh 2 tiếng chuông

......

Lúc 12 giờ trưa đồng hồ đánh 12 tiếng chuông.

Do đó, từ 0 giờ đến 12 giờ trưa, đồng hồ đánh số tiếng chuông là:

1+ 2+ 3+ .... + 11+ 12

Đây là tổng 12 số hạng của cấp số cộng có số hạng đầu u1= 1, công sai d = 1

Vậy tổng số tiếng chuông đồng hồ trong khoảng thời gian từ 0 đến 12 giờ trưa là:

Giải bài 5 trang 98 sgk Đại số 11 | Để học tốt Toán 11Kiến thức áp dụng

+ Tổng của n số hạng đầu tiên của cấp số cộng (un) có số hạng đầu tiên u1 và công sai d là:

Giải bài 5 trang 98 sgk Đại số 11 | Để học tốt Toán 11

Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 11 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 11 khác nhau.

 

 

 

 



#soanbaitap

Không có nhận xét nào:

Đăng nhận xét