Bài 1 (trang 18 SGK Giải tích 12): Áp dụng Quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau:
a) y = 2x3 + 3x2 - 36x - 10
Lời giải:
a) TXĐ: D = R
y' = 6x2 + 6x - 36
y' = 0 ⇔ x = -3 hoặc x = 2
Bảng biến thiên:
Kết luận :
Hàm số đạt cực đại tại x = -3 ; yCĐ = 71
Hàm số đạt cực tiểu tại x = 2; yCT = -54.
b) TXĐ: D = R
y'= 4x3 + 4x = 4x(x2 + 1) = 0;
y' = 0 ⇔ x = 0
Bảng biến thiên:
Vậy hàm số đạt cực tiểu tại x = 0; yCT = -3
hàm số không có điểm cực đại.
c) TXĐ: D = R {0}
y' = 0 ⇔ x = ±1
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x = -1; yCĐ = -2;
hàm số đạt cực tiểu tại x = 1; yCT = 2.
d) TXĐ: D = R
y'= (x3)’.(1 – x)2 + x3.[(1 – x)2]’
= 3x2.(1 – x)2 + x3.2(1 – x).(1 – x)’
= 3x2(1 – x)2 - 2x3(1 – x)
= x2.(1 – x)(3 – 5x)
y' = 0 ⇔ x = 0; x = 1 hoặc x = 3/5
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x =
hàm số đạt cực tiểu tại xCT = 1.
(Lưu ý: x = 0 không phải là cực trị vì tại điểm đó đạo hàm bằng 0 nhưng đạo hàm không đổi dấu khi đi qua x = 0.)
e) Tập xác định: D = R.
Bảng biến thiên:
Vậy hàm số đạt cực tiểu tại x = 1/2.
Bài 2 (trang 18 SGK Giải tích 12): Áp dụng Quy tắc 2, hãy tìm các điểm cực trị của hàm số sau:
a) y = x4 - 2x2 + 1 ;
b) y = sin2x – x
c) y = sinx + cosx ;
d) y = x5 - x3 - 2x + 1
Lời giải:
a) TXĐ: D = R.
+ y' = 4x3 - 4x
y' = 0 ⇔ 4x(x2 – 1) = 0 ⇔ x = 0 hoặc x = ±1.
+ y" = 12x2 - 4
y"(0) = -4 < 0 ⇒ x = 0 là điểm cực đại của hàm số.
y"(1) = 8 > 0 ⇒ x = 1 là điểm cực tiểu của hàm số.
y"(-1) = 8 > 0 ⇒ x = -1 là điểm cực tiểu của hàm số.
b) TXĐ: D = R
+ y' = 2cos2x – 1;
+ y" = -4.sin2x
⇒ (k ∈ Z) là các điểm cực đại của hàm số.
⇒ (k ∈ Z) là các điểm cực tiểu của hàm số.
c) TXĐ: D = R
+ y’ = cos x – sin x.
+ y’’ = -sin x – cos x =
⇒ là các điểm cực đại của hàm số.
⇒ là các điểm cực tiểu của hàm số.
d) TXĐ: D = R
+ y'= 5x4 - 3x2 - 2
y' = 0 ⇔ 5x4 – 3x2 – 2 = 0
⇔ x = ±1.
+ y" = 20x3 - 6x
y"(-1) = -20 + 6 = -14 < 0
⇒ x = -1 là điểm cực đại của hàm số.
y"(1) = 20 – 6 = 14 > 0
⇒ x = 1 là điểm cực tiểu của hàm số.
Kiến thức áp dụng
Tìm điểm cực trị của hàm số :
1. Tìm tập xác định
2. Tính f’(x). Tìm các giá trị xi để f’(x) = 0 hoặc f’(x) không xác định.
3. Tính f’’(x). Xét dấu f’’(xi).
4. Kết luận : Các điểm xi làm cho f’’(xi) < 0 là các điểm cực đại
Các điểm xi làm cho f’’(xi) > 0 là các điểm cực tiểu.
Bài 3 (trang 18 SGK Giải tích 12): Chứng minh hàm số y = √|x| không có đạo hàm tại x = 0 nhưng vẫn đạt được cực tiểu tại điểm đó.
Lời giải:
Hàm số có tập xác định D = R và liên tục trên R.
+ Chứng minh hàm số không có đạo hàm tại x = 0.
Xét giới hạn :
⇒ Không tồn tại giới hạn
Hay hàm số không có đạo hàm tại x = 0.
+ Chứng minh hàm số đạt cực tiểu tại x = 0 (Dựa theo định nghĩa).
Ta có : f(x) > 0 = f(0) với ∀ x ∈ (-1 ; 1) và x ≠ 0
⇒ Hàm số y = f(x) đạt cực tiểu tại x = 0.
Kiến thức áp dụng
Hàm số y = f(x) liên tục trên (a ; b) và x0 ∈ (a ; b).
+ Hàm số y = f(x) có đạo hàm tại x0 nếu tồn tại giới hạn
+ Hàm số y = f(x) đạt cực tiểu tại x0 nếu tồn tại số dương h sao cho f(x) > f(x0) với ∀ x ∈ (x0 – h ; x0 + h) và x ≠ x0.
Bài 4 (trang 18 SGK Giải tích 12): Chứng minh rằng với mọi giá trị của tham số m, hàm số
y = x3 - mx2 - 2x + 1
luôn luôn có một cực đại và một điểm cực tiểu.
Lời giải:
TXĐ: D = R
+ y' = 3x2 - 2mx – 2
y’ = 0 ⇔ 3x2 – 2mx – 2 = 0 ⇔
+ y’’ = 6x – 2m.
⇒ là một điểm cực đại của hàm số.
⇒ là một điểm cực tiểu của hàm số.
Vậy hàm số luôn có 1 điểm cực đại và 1 điểm cực tiểu.
Kiến thức áp dụng
Xét y = f(x) có đạo hàm cấp hai trong khoảng (x0 – h ; x0 + h), h > 0.
+ f’(x0) = 0 và f’’(x0) > 0 thì x0 là điểm cực tiểu.
+ f’(x0) = 0 và f’’(x0) < 0 thì x0 là điểm cực đại.
Bài 5 (trang 18 SGK Giải tích 12): Tìm a và b để các cực trị của hàm số
đều là nhưng số dương và xo = -5/9 là điểm cực đại.
Lời giải:
TXĐ: D = R.
+ y’ = 5a2x2 + 4ax – 9.
⇒ y’’ = 10a2x + 4a.
- Nếu a = 0 thì y’ = -9 < 0 với ∀ x ∈ R
⇒ Hàm số không có cực trị (loại)
- Nếu a ≠ 0.
Các cực trị của hàm số đều dương
Các cực trị của hàm số đều dương
Vậy hoặc là các giá trị cần tìm.
Kiến thức áp dụng
Xét y = f(x) có đạo hàm cấp hai trong khoảng (x0 – h ; x0 + h), h > 0.
+ f’(x0) = 0 và f’’(x0) > 0 thì x0 là điểm cực tiểu.
+ f’(x0) = 0 và f’’(x0) < 0 thì x0 là điểm cực đại.
Bài 6 (trang 18 SGK Giải tích 12): Xác định giá trị của tham số m để hàm số m để hàm số đạt giá trị cực đại tại x = 2.
Lời giải:
Ta có bảng biến thiên:
Dựa vào BBT thấy hàm số đạt cực đại tại x = -m – 1.
Hàm số đạt cực đại tại x = 2 ⇔ -m – 1 = 2 ⇔ m = -3.
Vậy m = -3.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 12 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 12 khác nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét