Thứ Tư, 5 tháng 8, 2020

Giá trị lớn nhất và giá trị nhỏ nhất của hàm số - soanbaitap.com

Bài 1 (trang 23-24 SGK Giải tích 12): Tính giá trị lớn nhất và nhỏ nhất của hàm số:

a) y = x3 - 3x2 - 9x + 35 trên các đoạn [-4; 4] và [0; 5] ;

b) y = x4 - 3x2 + 2 trên các đoạn [0; 3] và [2; 5] ;

c) Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 trên các đoạn [2 ; 4] và [-3 ; -2] ;

d) Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 trên đoạn [-1 ; 1].

Lời giải:

a) TXĐ: D = R.

y' = 3x2 - 6x - 9;

y' = 0 ⇔ x = –1 hoặc x = 3.

+ Xét hàm số trên đoạn [-4; 4] :

y(-4) = -41 ;

y(-1) = 40 ;

y(3) = 8

y(4) = 15.

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

+ Xét hàm số trên [0 ; 5].

y(0) = 35 ;

y(3) = 8 ;

y(5) = 40.

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

b) TXĐ: D = R

y' = 4x3 - 6x

y’ = 0 ⇔ 2x.(2x2 – 3) = 0 ⇔ Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

+ Xét hàm số trên [0 ; 3] :

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

+ Xét hàm số trên [2; 5].

y(2) = 6;

y(5) = 552.

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

c) TXĐ: D = (-∞; 1) ∪ (1; +∞)

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 > 0 với ∀ x ∈ D.

⇒ hàm số đồng biến trên (-∞; 1) và (1; +∞).

⇒ Hàm số đồng biến trên [2; 4] và [-3; -2]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

d) TXĐ: D = (-∞; 5/4]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12 với ∀ x ∈ (-∞; 5/4)

⇒ Hàm số nghịch biến trên (-∞; 5/4)

⇒ Hàm số nghịch biến trên [-1; 1]

Giải bài 1 trang 23 sgk Giải tích 12 | Để học tốt Toán 12

Bài 2 (trang 24 SGK Giải tích 12): Trong số các hình chữ nhật có cùng chu vi 16cm, hãy tìm hình chữ nhật có diện tích lớn nhất.

Lời giải:

Nửa chu vi hình chữ nhật là: 16 : 2 = 8cm.

Gọi độ dài 1 cạnh của hình chữ nhật là x (cm)

⇒ độ dài cạnh còn lại là : 8 – x (cm)

⇒ Diện tích của hình chữ nhật là:

S = x(8 – x) = 8x – x2 = 16 – (16 – 8x + x2) = 16 – (x – 4)2 ≤ 16.

⇒ Smax = 16

Dấu bằng xảy ra khi (x – 4)2 = 0 ⇔ x = 4.

Vậy trong các hình chữ nhật có chu vi 16cm thì hình vuông cạnh bằng 4cm có diện tích lớn nhất bằng 16cm2.

Kiến thức áp dụng

+ Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) ≤ M với mọi x thuộc D và tồn tại x0 ∈ D để f(x0) = M.

Bài 3 (trang 24 SGK Giải tích 12): Trong tất cả các hình chữ nhật có diện tích 48 m2, hãy xác định hình chữ nhật có chu vi nhỏ nhất.

Lời giải:

Gọi độ dài một cạnh của hình chữ nhật là x (m) (điều kiện: x > 0).

⇒ độ dài cạnh còn lại : Giải bài 3 trang 24 sgk Giải tích 12 | Để học tốt Toán 12 (m)

⇒ chu vi hình chữ nhật :

Giải bài 3 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Xét hàm số Giải bài 3 trang 24 sgk Giải tích 12 | Để học tốt Toán 12 trên (0; +∞):

Giải bài 3 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên trên (0; +∞):

Giải bài 3 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 3 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Vậy trong các hình chữ nhật có cùng diện tích 48m2 thì hình vuông cạnh 4√3 m có chu vi nhỏ nhất.

Kiến thức áp dụng

+ Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) ≤ M với mọi x thuộc D và tồn tại x0 ∈ D để f(x0) = M.

Bài 4 (trang 24 SGK Giải tích 12): Tính giá trị lớn nhất của các hàm số sau:

Giải bài 4 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Lời giải:

a) TXĐ: D = R

Ta thấy: 1 + x2 ≥ 1

Giải bài 4 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 4 trang 24 sgk Giải tích 12 | Để học tốt Toán 12 đạt được khi 1 + x2 = 1 ⇔ x = 0.

b) TXĐ : D = R

⇒ y' = 12x2 - 12x3 = 12x2(1 - x)

y' = 0 ⇔ x = 0 hoặc x = 1

Bảng biến thiên:

Giải bài 4 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Từ bảng biến thiên suy ra: max y = y(1) = 1.

Kiến thức áp dụng

+ Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) ≤ M với mọi x thuộc D và tồn tại x0 ∈ D để f(x0) = M.

Bài 5 (trang 24 SGK Giải tích 12): Tính giá trị nhỏ nhất của các hàm số sau:

Giải bài 5 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Lời giải:

a)

- Cách 1:

Ta có: y = |x| ≥ 0 ∀ x

⇒ Hàm số có giá trị nhỏ nhất là min y = 0 khi x = 0.

- Cách 2:

Giải bài 5 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 5 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Từ bảng biến thiên suy ra: min y = 0

b) D = (0; +∞)

Giải bài 5 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Bảng biến thiên:

Giải bài 5 trang 24 sgk Giải tích 12 | Để học tốt Toán 12

Từ bảng biến thiên suy ra: min y = y(2) = 4

Kiến thức áp dụng

+ Số M được gọi là giá trị lớn nhất của hàm số y = f(x) trên tập D nếu f(x) ≤ M với mọi x thuộc D và tồn tại x0 ∈ D để f(x0) = M.

Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 12 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 12 khác nhau.

 

 

 

 



#soanbaitap

Không có nhận xét nào:

Đăng nhận xét