Bài 1 (trang 54 SGK Đại số 11): Từ các chữ số 1, 2, 3, 4, 5, 6 lập các số tự nhiên gồm 6 chữ số khác nhau. Hỏi:
a. Có tất cả bao nhiêu số?
b. Có bao nhiêu số chẵn, bao nhiêu số lẻ?
c. Có bao nhiêu số bé hơn 432.000?
Lời giải:
Đặt A = {1, 2, 3, 4, 5, 6}.
n(A) = 6.
a. Việc lập các số tự nhiên có 6 chữ số khác nhau là việc sắp xếp thứ tự 6 chữ số của tập A. Mỗi số là một hoán vị của 6 phần tử đó
⇒ Có P6 = 6! = 6.5.4.3.2.1 = 720 số thỏa mãn
Vậy có 720 số thỏa mãn đầu bài.
b. Việc lập các số chẵn là việc chọn các số có tận cùng bằng 2, 4 hoặc 6.
Gọi số cần lập là
+ Chọn f : Có 3 cách chọn (2 ; 4 hoặc 6)
+ Chọn e : Có 5 cách chọn (khác f).
+ Chọn d : Có 4 cách chọn (khác e và f).
+ Chọn c : Có 3 cách chọn (khác d, e và f).
+ Chọn b : Có 2 cách chọn (khác c, d, e và f).
+ Chọn a : Có 1 cách chọn (Chữ số còn lại).
⇒ Theo quy tắc nhân: Có 3.5.4.3.2.1 = 360 (cách chọn).
Vậy có 360 số chẵn, còn lại 720 – 360 = 360 số lẻ.
c. Chọn một số nhỏ hơn 432.000 ta có hai cách chọn :
Cách 1 : Chọn số có chữ số hàng trăm nghìn nhỏ hơn 4.
+ Chọn chữ số hàng trăm nghìn : Có 3 cách (1, 2 hoặc 3).
+ Sắp xếp 5 chữ số còn lại : Có P5 = 120 cách.
⇒ Theo quy tắc nhân: Có 3.120 = 360 số thỏa mãn.
Cách 2 : Chọn số có chữ số hàng trăm nghìn bằng 4. Tiếp tục có 2 cách thực hiện.
- Chọn chữ số hàng chục nghìn nhỏ hơn 3 :
+ Chọn chữ số hàng chục nghìn : Có 2 cách (Chọn 1 hoặc 2).
+ Sắp xếp 4 chữ số còn lại : Có P4 = 24 cách.
⇒ Theo quy tắc nhân: Có 2.24 = 48 số thỏa mãn.
- Chọn chữ số hàng chục nghìn bằng 3, khi đó :
+ Chữ số hàng nghìn : Có 1 cách chọn (Phải bằng 1).
+ Sắp xếp 3 chữ số còn lại : Có P3 = 6 cách chọn
⇒ Theo quy tắc nhân: Có 1.6 = 6 số thỏa mãn.
⇒ Theo quy tắc cộng: Có 48 + 6 = 54 số thỏa mãn có chữ số hàng trăm nghìn bằng 4.
⇒ Có: 360 + 54 = 414 số nhỏ hơn 432 000.
Bài 2 (trang 54 SGK Đại số 11): Có bao nhiêu cách sắp xếp chỗ ngồi cho mười người vào mười ghế kê thành một dãy?
Lời giải:
Mỗi cách sắp xếp chỗ ngồi cho mười người vào mười ghế là một hoán vị của một tập hợp có 10 phần tử.
Vậy có P10 = 10! = 3.628.800 cách sắp xếp.
Kiến thức áp dụng
- Một hoán vị của tập hợp n phần tử là kết quả của sự sắp xếp thứ tự n phần tử của tập hợp A.
Số hoán vị: Pn = n!.
Bài 3 (trang 54 SGK Đại số 11): giả sử có bảy bông hoa màu khác nhau và ba lọ khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Lời giải:
Việc cắm ba bông hoa vào ba lọ đã cho chính là việc chọn 3 bông hoa trong số 7 bông hoa rồi sắp xếp chúng vào các lọ.
Vậy số cách chọn chính là (cách).
Kiến thức áp dụng
Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
Số các chỉnh hợp:
Bài 4 (trang 55 SGK Đại số 11): Có bao nhiêu cách mắc nối tiếp 4 bóng đèn được chọn từ 6 bóng đèn khác nhau?
Lời giải:
Việc chọn 4 bóng đèn mắc nối tiếp chính là việc chọn lấy 4 bóng đèn khác nhau trong tập hợp 6 bóng đèn và sắp xếp chúng theo thứ tự và chính là chỉnh hợp chập 4 của 6.
Vậy có (cách).
Kiến thức áp dụng
Kết quả của việc lấy k phần tử khác nhau từ n phần tử của tập A và sắp xếp chúng theo một thứ tự nào đó được gọi là một chỉnh hợp chập k của n phần tử đã cho.
Số các chỉnh hợp:
Trả lời câu hỏi Toán 11 Đại số Bài 2 trang 51: Cho tập A = {1, 2, 3, 4, 5}. Hãy liệt kê các tổ hợp chập 3, chập 4 của 5 phần tử của A.
Lời giải:
Các tổ hợp chập 3 là: {1,2,3};{1,2,4};{1,2,5};{1,3,4};{1,3,5};{1,4,5};{2,3,4};{2,3,5};{2,4,5};{3,4,5}
Các tổ hợp chập 4 là:
{1,2,3,4},{1,2,3,5},{1,3,4,5},{1,2,4,5},{2,3,4,5}
Bài 7 (trang 55 SGK Đại số 11): Trong mặt phẳng có bao nhiêu hình chữ nhật được tạo thành từ bốn đường thẳng song song với nhau và năm đường thẳng vuông góc với bốn đường thẳng song song đó?
Lời giải:
Việc lập một hình chữ nhật được thực hiện bởi hai bước:
+ Chọn 2 đường thẳng trong số 4 đường thẳng.
Có: cách chọn.
+ Chọn 2 đường thẳng trong số 5 đường thẳng vuông góc
Có: cách chọn.
⇒ Theo quy tắc nhân: Có 10.6 = 60 (cách lập hình chữ nhật).
Kiến thức áp dụng
+ Tổ hợp chập k của n là kết quả của việc chọn k phần tử khác nhau trong tập hợp n phần tử (không có sự sắp xếp).
+ Số các tổ hợp:
+ Quy tắc nhân: Một công việc được hoàn thành bởi hai hành động liên tiếp.
- Hành động thứ nhất có m cách thực hiện.
- Hành động thứ hai có n cách thực hiện
⇒ Có m.n cách hoàn thành công việc.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 11 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 11 khác nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét