Bài 1 (trang 119 SGK Hình học 11): Trong các mệnh đề sau đây mệnh đề nào là đúng?
a) Đường thẳng Δ là đường vuông góc chung của hai đường thẳng a và b nếu Δ ⊥a và Δ ⊥b.
b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a và b chéo nhau thì đường vuông góc chung của a và b luôn luôn vuông góc với (P).
c) Gọi Δ là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì Δ là giao tuyến của hai mặt phẳng (a, Δ) và (b, Δ).
d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.
e) Đường vuông góc chung Δ của hai đường thẳng chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia.
Lời giải:
a) Sai
Sửa lại: "Đường thẳng Δ là đường thẳng vuông góc chung của hai đường thẳng chéo nhau a và b nếu Δ cắt cả a và b, đồng thời Δ ⊥ a và Δ ⊥ b"
b) Đúng
c) Đúng
d) Sai
Sửa lại: Đường thẳng đi qua M trên a và vuông góc với a, đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.
e) Sai.
Bài 2 (trang 119 SGK Hình học 11): Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H , K lần lượt là trực tâm của tam giác ABC và SBC.
a) Chứng minh ba đường thẳng AH, SK, BC đồng quy.
b) Chứng minh rằng SC vuông góc với mặt phẳng (BHK) và HK vuông góc với mặt phẳng (SBC).
c) Xác định đường vuông góc chung của BC và SA.
Lời giải:
Kiến thức áp dụng
+ Hai mặt phẳng cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng (nếu có) cũng vuông góc với mặt phẳng thứ ba.
+ Đường vuông góc chung của hai đường thẳng chéo nhau a, b là đường thẳng cắt a, b và cùng vuông góc với a, b.
Bài 3 (trang 119 SGK Hình học 11): Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng các khoảng cách từ các điểm B, C, D, A', B' và D' đến đường chéo AC' đều bằng nhau. Tính khoảng cách đó.
Lời giải:
a) Ta có: ∆ ABC’ = ∆ C’CA = ∆ADC’=∆ AA’C’ =∆ C’B’A = ∆C’D’A (c.c.c)
⇒ Các đường cao hạ từ B; C; D; A’; B’; D’ xuống AC’ bằng nhau
( chú ý: các tam giác trên đều có chung cạnh AC’)
Gọi khoảng cách đó là h.
Ta có: CC’ = a;
ΔC’AC vuông tại C, có hai cạnh góc vuông là CA và CC’. Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:
Bài 4 (trang 119 SGK Hình học 11): Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = b, CC' = c.
a) Tính khoảng cách từ B đến mặt phẳng (ACC'A').
b) Tính khoảng cách giữa hai đường thẳng BB' và AC'.
Lời giải:
Bài 5 (trang 119 SGK Hình học 11): Cho hình lập phương ABCD.A'B'C'D'
a) Chứng minh rằng B'D vuông góc với mặt phẳng (BA'C')
b) Tính khoảng cách giữa hai mặt phẳng (BA'C') và (ACD')
c) Tính khoảng cách giữa hai đường thẳng BC' và CD'
Lời giải:
b) Xét tứ giác A’BCD’ có BC//A’D’ và BC = A’D’
=> tứ giác A’BCD’ là hình bình hành
=> BA’ // CD’ ( tính chất của hình bình hành)
Tương tự, tứ giác ABC’D’ là hình bình hành nên BC’//AD’
Gọi O và O’ là tâm của ABCD và A’B’C’D’.
Gọi H và I lần lượt là tâm của hai tam giác đều BA’C’ và ACD’.
* Xét ( BB’D’D) có BO’// D’O nên OI // HB
Lại có: O là trung điểm BD
=> I là trung điểm của HD: IH = ID (1)
* Xét (BB’D’D) có D’O// BO’ nên D’I // HO’
Lại có: O’ là trung điểm của B’D’ nên H là trung điểm B’I: HI = HB’ (2)
Từ (1) và (2) suy ra:
* Theo phần trên B'D ⊥ (BA'C) ⇒ IH ⊥ (BA'C)
Mà I ∈ (ACD') nên khoảng cách giữa hai mp song song (ACD’) và ( BA’C’) là độ dài đoạn IH.
Khi đó:
Bài 6 (trang 119 SGK Hình học 11): Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD của tứ diện ABCD là đường vuông góc chung của AB và CD thì AC = BD và AD = BC.
Lời giải:
Gọi I, K lần lượt là trung điểm của cạnh AB và CD
Qua K kẻ đường thẳng d // AB, trên d lấy A', B' sao cho K là trung điểm của A'B' và
KA' = IA
* Xét tam giác CKB’ và DKA’ có:
KC= KD ( giả thiết)
KB’= KA’( cách dựng)
( hai góc đối đỉnh )
=> ∆ CKB’ = ∆ DKA’ ( c.g.c)
=> B’C = A’D
*Xét tứ giác IBB’K có IB= KB’ và IB // KB’ ( cách dựng)
=> Tứ giác IBB’K là hình bình hành
=> BB’ // IK (1)
Chứng minh tương tự, ta có: AA’// IK (2)
Từ (1) và (2) suy ra: BB’// IK// AA’ (*)
Lại có:IK ⊥ CK
=> IK ⊥ (CKB') (**)
Từ (*) và (**) suy ra BB' ⊥ (CKB') ; AA' ⊥ (CKB')
⇒ BB' ⊥ B'C; AA' ⊥ A'D
* Xét hai tam giác vuông BCB’ và ADA’ có:
BB’ = AA’ (= IK)
CB’ = A’D (chứng minh trên)
=> ∆ BCB’ = ∆ ADA’ ( cạnh huyền –cạnh góc vuông)
=> BC= AD.
* Chứng minh tương tự, AC = BD
Bài 7 (trang 120 SGK Hình học 11): Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Tính khoảng cách từ S tới mặt đáy (ABC).
Lời giải:
Gọi H là tâm của tam giác ABC ( khi đó H là trọng tâm, trực tâm của tam giác ABC).
Do hình chóp S.ABC là hình chóp tam giác đều nên SH ⊥ (ABC)
Vậy khoảng cách từ S đến (ABC ) là a.
Bài 8 (trang 120 SGK Hình học 11): Cho tứ diện ABCD cạnh a. Tính khoảng cách giữa hai cạnh đối diện của tứ diện đều đó.
Lời giải:
Hai tam giác CBA và DBA là hai tam giác đều cạnh a
=> ∆ CBA = ∆ DBA ( c.c.c)
=> CM = DM ( 2 đường trung tuyến tương ứng)
=> Tam giác CMD cân tại M.
Lại có: MN là đường trung tuyến nên đồng thời là đường cao: MN ⊥ CD
* Chứng minh tương tự, ta có: MN ⊥ AB
Do đó, MN là đoạn vuông góc chung của AB và CD.
* Tam giác BCD là tam giác đều cạnh a nên
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét