Thứ Ba, 18 tháng 8, 2020

Ôn tập chương III – Phương pháp tọa độ trong mặt phẳng - soanbaitap.com

Bài 1 (trang 93 SGK Hình học 10): Cho hình chữ nhật ABCD. Biết các đỉnh A(5; 1), C(0; 6) và phương trình CD: x + 2y -12 = 0. Tìm phương trình đường thẳng chứa các cạnh còn lại.

Lời giải

Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10

CD: x + 2y – 12 = 0 ⇒ CD nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

⇒ CD nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtcp.

+ ABCD là hcn ⇒ AD ⊥ CD ⇒ AD nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

A(5 ; 1) ∈ AD

⇒ Phương trình đường thẳng AD: 2( x- 5) – 1(y – 1) = 0 hay 2x – y – 9 = 0.

+ ABCD là hcn ⇒ AB // CD ⇒ AB nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

A(5;1) ∈ AB

⇒ Phương trình đường thẳng AB: 1( x- 5) + 2(y -1) = 0 hay x + 2y – 7 = 0

+ ABCD là hcn ⇒ BC ⊥ CD ⇒ BC nhận Giải bài 1 trang 93 sgk Hình học 10 | Để học tốt Toán 10 là một vtpt

C(0, 6) ∈ CD

⇒ Phương trình đường thẳng BC: 2(x- 0)- 1(y – 6) =0 hay 2x – y + 6 = 0.

Bài 2 (trang 93 SGK Hình học 10): Cho A(1; 2), B(-3; 1) và C(4; -2). Tìm tập hợp các điểm M sao cho MA2 + MB2= MC2

Lời giải

Gọi M(x, y)

⇒ MA2 = (x – 1)2 + (y – 2)2

MB2 = (x + 3)2 + (y – 1)2

MC2 = (x – 4)2 + (y + 2)2

MA2 + MB2 = MC2

⇔ (x – 1)2 + (y – 2)2 + (x + 3)2 + (y – 1)2 = (x – 4)2 + (y + 2)2

⇔ [(x – 1)2 + (x + 3)2 – (x – 4)2] + [(y – 2)2 + (y – 1)2 – (y + 2)2] = 0

⇔ (x2 – 2x +1 +x2 + 6x + 9 – x2 + 8x -16) + (y2 – 4y + 4 + y2 – 2y + 1 – y2 – 4y – 4) = 0

⇔ (x2 + 12x – 6) + (y2 – 10y + 1) = 0

⇔ (x2 + 12x – 6 +42) + (y2 – 10y + 1+ 24) = 42 +24

⇔ (x2 + 12x + 36) + (y2 – 10y + 25) = 66

⇔ (x + 6)2 + (y – 5)2 = 66.

Vậy tập hợp các điểm M là đường tròn tâm I(–6; 5), bán kính R = √66.

Bài 3 (trang 93 SGK Hình học 10): Tìm tập hợp các điểm cách đều hai đường thẳng: (Δ1): 5x + 3y – 3 = 0 và (Δ2) : 5x + 3y + 7 = 0.

Lời giải

Gọi điểm cách đều hai đường thẳng (Δ1) và (Δ2) là M(x, y).

Ta có:

Giải bài 3 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy tập hợp các điểm M cách đều hai đường thẳng đã cho là đường thẳng: 5x + 3y + 2 = 0.

Bài 4 (trang 93 SGK Hình học 10): Cho đường thẳng Δ : x – y + 2 = 0 và hai điểm O(0; 0), A(2; 0).

a, Tìm điểm đối xứng của O qua Δ.

b, Tìm điểm M trên Δ sao cho độ dài đường gấp khúc OMA ngắn nhất.

Lời giải

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10a, Cách 1: Gọi O’ là điểm đối xứng với O qua (Δ)

⇒ OO’ ⊥ Δ tại trung điểm I của OO’.

+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

OO’ ⊥ Δ ⇒ OO’ nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà O(0, 0) ∈ OO’

⇒ Phương trình đường thẳng OO’: x + y = 0.

+ I là giao OO’ và Δ nên tọa độ của I là nghiệm của hệ phương trình:

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi O’(x, y) là điểm đối xứng với O qua Δ.

+ Trung điểm I của OO’ là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10+ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt ⇒ (Δ) nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10Từ (1) và (2) ta có hệ phương trình

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10Vậy O’(–2; 2).

b)

+ Vì O và A nằm cùng một nửa mặt phẳng bờ là đường thẳng Δ nên đoạn thẳng OA không cắt Δ.

O’ và A thuộc hai nửa mặt phẳng khác nhau bờ là đường thẳng Δ nên O’A cắt Δ.

Do O’ đối xứng với O qua đường thẳng ∆ nên ∆ là đường trung trực của đoạn thẳng OO’, với mọi M ∈ Δ ta có MO = MO’.

Độ dài đường gấp khúc OMA bằng OM + MA = O’M + MA ≥ O’A.

⇒ O’M + MA ngắn nhất khi O’M + MA = O’A ⇔ M là giao điểm của O’A và Δ.

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtcp

⇒ O’A nhận Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt. Mà A(2; 0) ∈ O’A

⇒ Phương trình đường thẳng O’A : 1(x - 2) + 2(y - 0)= 0 hay x + 2y – 2 = 0.

M là giao điểm của O’A và Δ nên tọa độ điểm M là nghiệm của hệ :

Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10Vậy điểm M cần tìm là Giải bài 4 trang 93 SGK hình học 10 | Giải toán lớp 10

Bài 5 (trang 93 SGK Hình học 10): Cho ba điểm A(4; 3), B(2; 7) và C(-3; -8).

a, Tìm tọa độ trọng tâm G và trực tâm H của tam giác ABC;

b, Gọi T là tâm đường tròn ngoại tiếp tam giác ABC. Chứng minh T, G và H thẳng hàng.

c, Viết phương trình đường tròn ngoại tiếp tam giác ABC.

Lời giải

a)

– Tọa độ trọng tâm G của tam giác ABC là:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

– Tọa độ trực tâm H của tam giác ABC:

Cách 1:

+ Phương trình đường cao BD:

BD ⊥ AC ⇒ Đường thẳng BD nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

BD đi qua B(2; 7)

⇒ Phương trình đường thẳng BD: 7(x - 2) +11(y - 7) = 0 hay 7x + 11y – 91 = 0

+ Phương trình đường cao CE:

CE ⊥ AB ⇒ Đường thẳng CE nhận Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10 là một vtpt

CE đi qua C(–3; –8)

⇒ Phương trình đường thẳng CE: 1(x + 3) – 2(y + 8)=0 hay x – 2y – 13 = 0.

Trực tâm H là giao điểm của BD và CE nên tọa độ của H là nghiệm của hpt:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Cách 2: Gọi H(x, y) là trực tâm tam giác ABC

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Từ (1) và (2) ta có hệ phương trình

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

b) Gọi T(x; y) là tâm đường tròn ngoại tiếp tam giác ABC

Khi đó TA = TB = TC = R.

+ TA = TB ⇒ AT2 = BT2

⇒ (x – 4)2 + (y – 3)2 = (x – 2)2 + (y – 7)2

⇒ x2 – 8x + 16 + y2 – 6y + 9 = x2 – 4x + 4 + y2 – 14y + 49

⇒ 4x – 8y = –28

⇒ x – 2y = –7 (1)

+ TB = TC ⇒ TB2 = TC2

⇒ (x – 2)2 + (y – 7)2 = (x + 3)2 + (y + 8)2

⇒ x2 – 4x + 4 + y2 – 14y + 49 = x2 + 6x + 9 + y2 + 16y + 64

⇒ 10x + 30y = –20

⇒ x + 3y = –2 (2)

Từ (1) và (2) ⇒ x = –5, y = 1 ⇒ T(–5 ; 1).

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

⇒ T, H, G thẳng hàng.

c) Tâm đường tròn ngoại tiếp ΔABC: T(–5; 1)

Bán kính đường tròn ngoại tiếp ΔABC:

Giải bài 5 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình đường tròn ngoại tiếp tam giác ABC :

(x + 5)2 + (y – 1)2 = 85

Bài 6 (trang 93 SGK Hình học 10): Lập phương trình hai đường phân giác của các góc tạo bởi hai đường thẳng 3x – 4y + 12 = 0 và 12x + 5y – 7 = 0.

Lời giải

Gọi M(x;y) là điểm thuộc đường phân giác của góc tạo bởi hai đường thẳng đã cho

+) Ta có:

Giải bài 6 trang 93 SGK hình học 10 | Giải toán lớp 10

+) Do điểm M thuộc đường phân giác của góc tạo bởi hai đường thẳng d1 và d2 nên điểm M cách đều hai đường thẳng trên: d( M; d1)= d(M, d2 )

Giải bài 6 trang 93 SGK hình học 10 | Giải toán lớp 10

Vậy phương trình 2 đường phân giác của góc tạo bởi hai đường thẳng đã cho là:

-21 x – 77y + 191= 0 và 99x – 27y + 121 =0

Bài 7 (trang 93 SGK Hình học 10):

Cho đường tròn (C) có tâm I(1; 2) và bán kính bằng 3. Chứng minh rằng tập hợp các điểm M mà từ đó vẽ được hai tiếp tuyến với (C) tạo với nhau một góc 60o là một đường tròn. Hãy viết phương trình đường tròn đó.

Lời giải

Giải bài 7 trang 93 sgk Hình học 10 | Để học tốt Toán 10Gọi A, B là hai tiếp điểm của tiếp tuyến kẻ từ M đến (C).

Giải bài 7 trang 93 sgk Hình học 10 | Để học tốt Toán 10Mà điểm I là cố định nên tập hợp các điểm M là đường tròn tâm I, bán kính R = 6 và có phương trình: (x – 1)2 + (y – 2)2 = 36.

Bài 8 (trang 93 SGK Hình học 10): Tính góc giữa hai đường thẳng ∆1 và ∆2 trong các trường hợp sau:

a) Δ1: 2x + y – 4 = 0 và Δ2 : 5x – 2y + 3 = 0.

b) Δ1: y = –2x + 4 và Δ2Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10

Lời giải

a) Hai đường thẳng Δ1 và Δ2 có vecto pháp tuyến lần lượt là: n1→(2;1); n2→(5;-2)

Góc giữa hai đường thẳng (Δ1) và (Δ2) là:

Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10b) Cách 1:

Δ1: y = –2x + 4 ⇔ 2x + y – 4 = 0

Δ2Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10 ⇔ x - 2y + 3 = 0

Hai đường thẳng Δ1 và Δ2 có vecto pháp tuyến lần lượt là: n1→(2;1); n2→(1;-2)

Góc giữa (Δ1) và (Δ2):

Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10Cách 2:

Δ1: y = –2x + 4 có hệ số góc k1 = –2

Δ2Giải bài 8 trang 93 SGK hình học 10 | Giải toán lớp 10 có hệ số góc k2 = 1/2

Nhận thấy k1.k2 = –1 nên Δ1 ⊥ Δ2 ⇒ (Δ1, Δ2) = 90°.

Bài 9 (trang 93 SGK Hình học 10): Cho elip (E): Giải bài 9 trang 93 SGK hình học 10 | Giải toán lớp 10 . Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó.

Lời giải

Elip (E): Giải bài 9 trang 93 SGK hình học 10 | Giải toán lớp 10 có a = 4, b = 3 ⇒ c2 = a2 – b2 = 7 ⇒ c = √7.

+ Các đỉnh của elip là: A1(–4; 0); A2(4; 0); B1(0; –3); B2(0; 3).

+ Tiêu điểm của elip: F1(–√7; 0); F2(√7; 0).

+ Vẽ elip:

Giải bài 9 trang 93 SGK hình học 10 | Giải toán lớp 10

Bài 10 (trang 94 SGK Hình học 10):

Ta biết rằng Mặt Trăng chuyển động quang Trái Đất theo một quỹ đạo là một elip mà Trái Đất là một tiêu điểm. Elip đó có chiều dài trục lớn và trục nhỏ lần lượt là 769 266 km và 768 106 km. Tính khoảng cách ngắn nhất và khoảng cách dài nhất từ Trái Đất đến Mặt Trăng, biết rằng các khoảng cách đó đạt được khi Trái Đất và Mặt Trăng nằm trên trục lớn của elip

Lời giải

Giải bài 10 trang 94 SGK hình học 10 | Giải toán lớp 10Theo đề bài có:

Độ dài trục lớn của elip bằng 769266km ⇒ A1A2 = 2a = 769266 ⇒ a = 384633

Độ dài trục nhỏ của elip bằng 768106km ⇒ B1B2 = 2b = 768106 ⇒ b = 384053

⇒ c2 = a2 – b2 = 445837880 ⇒ c ≈ 21115

⇒ F1F2 = 2c = 42230

⇒ A1F1 = A2F2 = (A1A2 – F1F2)/2 = 363518

+ Trái Đất gần Mặt Trăng nhất khi Mặt Trăng ở điểm A2

⇒ khoảng cách ngắn nhất giữa Trái Đất và Mặt Trăng bằng A2F2 = 363518 km

+ Trái Đất xa Mặt Trăng nhất khi Mặt Trăng ở điểm A1

⇒ khoảng cách xa nhất giữa Trái Đất và Mặt Trăng bằng:

A1F2 = A1F1 + F1F2 = 405748 km.

Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 10 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 10 khác nhau.

 

 

 

 

 



#soanbaitap

Không có nhận xét nào:

Đăng nhận xét