Thứ Bảy, 1 tháng 8, 2020

Ôn tập chương V – Thống kê - soanbaitap.com

Bài 1 (trang 128 SGK Đại Số 10): Chỉ rõ các bước để

a) Lập bảng phân bố tần suất ghép lớp.

b) Lập bảng phân bố tần số ghép lớp.

Lời giải

a) Lập bảng phân bố tần suất ghép lớpv

Bước 1: Chia số liệu thành các lớp thích hợp hoặc theo yêu cầu.

Bước 2: Tìm tần số của mỗi lớp. (Đếm xem trong dãy số liệu có bao nhiêu số thuộc mỗi lớp)

Bước 3: Tính tần suất của mỗi lớp (lấy tần số chia cho tổng các số liệu).

b) Lập bảng phân bố tần số ghép lớp

Bước 1: Chia số liệu thành các lớp thích hợp hoặc theo yêu cầu.

Bước 2: Tìm tần số của mỗi lớp. (Đếm xem trong dãy số liệu có bao nhiêu số thuộc mỗi lớp)

Bài 2 (trang 129 SGK Đại Số 10): Nếu rõ cách tính số trung bình cộng, số trung vị, mốt, phương sai và độ lệch chuẩn.

Lời giải

Để tính được các số trung bình cộng, phương sai, độ lệch chuẩn, trước hết ta cần lập bảng phân bố (tần số, tần suất, tần số ghép lớp hoặc tần suất ghép lớp).

* Đối với bảng phân bố tần số:

Giá trị x1 x2 x3 xk Cộng
Tần số n1 n2 n3 nk N

Số trung bình cộng:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Phương sai:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Độ lệch chuẩn:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

* Đối với bảng phân bố tần suất:

Giá trị x1 x2 x3 xk Cộng
Tần số f1 f2 f3 fk 100%

Số trung bình cộng:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Phương sai:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Độ lệch chuẩn:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

* Đối với bảng phân bố tần số ghép lớp:

Lớp giá trị [a1; a2) [a2; a3) [a3; a4) [ak; ak+1] Cộng
Giá trị đại diện c1 c2 c3 ck
Tần số n1 n2 n3 nk N

Số trung bình cộng:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Phương sai:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Độ lệch chuẩn:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

* Đối với bảng phân bố tần suất ghép lớp:

Lớp giá trị [a1; a2) [a2; a3) [a3; a4) [ak; ak+1] Cộng
Giá trị đại diện c1 c2 c3 ck
Tần số f1 f2 f3 fk 100%

Số trung bình cộng:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Phương sai:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Độ lệch chuẩn:

Giải bài 2 trang 129 SGK Đại Số 10 | Giải toán lớp 10

* Để tìm số trung vị (Me) ta sắp xếp dãy số liệu theo thứ tự nhỏ dần (hoặc lớn dần) rồi lấy số chính giữa (nếu số lượng số liệu lẻ) hoặc trung bình cộng của hai số ở giữa (nếu số lượng số liệu chẵn)

* Để tìm mốt của dãy số liệu, ta xem xét xem số nào có tần số lớn nhất thì số liệu đó là mốt của dãy.

Bài 3 (trang 129 SGK Đại Số 10): Kết quả điều tra 59 hộ gia đình ở vùng dân cư về số con của mỗi hộ gia đình được ghi trong bảng sau

Giải bài 3 trang 129 SGK Đại Số 10 | Giải toán lớp 10

a) Lập bảng phân bố tần số và tần suất

b) Nêu nhận xét về số con của 59 gia đình đã được điều tra

c) Tính số trung bình cộng, số trung vị, mốt của các số liệu thống kê đã cho

Lời giải

a) Bảng phân bố tần số và tần suất:

Số con Tần số Tần suất
0 8 13,6%
1 13 22%
2 19 32,2%
3 13 22%
4 6 10,2%
Cộng 59 100%

b) Nhận xét: Hầu hết các gia đình có từ 1 đến 3 con.

Số gia đình có 2 con là nhiều nhất.

c) Số trung bình cộng:

Giải bài 3 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Mốt: M0 = 2 (có tần số lớn nhất bằng 19).

Sắp xếp dãy số liệu theo thứ tự không giảm:

0; 0; 0; …; 0; 1; 1; ….; 1; 2; 2; …; 2; 3; 3; …; 3; 4; 4; …; 4

Có 59 số liệu nên số trung vị là số thứ 30 trong dãy trên.

Số thứ 30 là 2 nên số trung vị Me = 2.

Bài 4 (trang 129 SGK Đại Số 10): Cho các số liệu thống kê được ghi trong hai bảng sau

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

a) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 1 với các lớp là

[630; 635) ; [635;640) ; [640; 645) ; [645; 650) ; [650; 655)

b) Lập bảng phân bố tần số và tần suất ghép lớp theo nhóm cá thứ 2 với các lớp là:

[638;642) ; [642; 646) ; [646;650) ; [650; 654] ;

c) Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu a) bằng cách vẽ biểu đồ tần suất hình cột và đường gấp khúc tần suất

d) Mô tả bảng phân bố tần suất ghép lớp đã được lập ở câu b) bằng cách vẽ biểu đồ tần số hình cột và đường gấp khúc tần số

e) Tính số trung bình cộng, phương sai và độ lệch chuẩn của các bảng phân bố đã lập được

Từ đó, xét xem nhóm cá nào có khối lượng đồng đều hơn

Lời giải

a) Bảng phân bố tần số và tần suất:

Nhóm cá thứ I Tần số Tần suất
[630;635) 1 4,2%
[635;640) 2 8,3%
[640;645) 3 12,5%
[645;650) 6 25%
[650;655] 12 50%
Cộng 24 100%

b) Bảng phân bố tần số và tần suất:

Nhóm cá thứ I Tần số Tần suất
[638;642) 5 18,52%
[642;646) 9 33,33%
[646;650) 1 3,7%
[650;654) 12 44,45%
Cộng 27 100%

c) Biểu đồ tần suất hình cột:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần suất

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

d) Biểu đồ tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

e) * Xét bảng phân bố ở câu a)

- Số trung bình:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Phương sai:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Độ lệch chuẩn:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

* Xét bảng phân bố ở câu b):

- Số trung bình:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Phương sai:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Độ lệch chuẩn:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Nhận thấy s2 < s1 nên nhóm cá thứ hai có khối lượng đồng đều hơn.

Bài 5 (trang 130 SGK Đại Số 10): Cho các số liệu thống kê được ghi trong bảng sau

Mức lương hàng năm của các cán bộ và nhân viên trong một công ty (đơn vị nghìn đồng)

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Tìm mức lương bình quân của các cán bộ và nhân viên trong công ti, số trung vị của các số liệu thống kê đã cho.

Nêu ý nghĩa của số trung vị

Lời giải

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

- Số trung bình:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Sắp xếp các số liệu theo dãy tăng dần:

20060; 20110; 20350; 20350; 20910; 20960; 21130; 21360; 21410; 21410; 76000; 125000.

Số trung vị: Me = (20960 + 21130)/2 = 21045.

Ý nghĩa: Số trung vị đại diện cho mức lương trung bình của nhân viên (vì trong trường hợp này chênh lệch giữa các số liệu quá lớn nên không thể lấy mức lương bình quân làm giá trị đại diện).

Bài 6 (trang 130 SGK Đại Số 10): Người ta đã tiến hành thăm dò ý kiến của khách hàng về các mẫu 1,2,3,4,5 của một loại sản phẩm mới được sản xuất ở một nhà máy. Dưới đây là bảng phân bố tần số theo số phiếu tín nhiệm dành cho các mẫu kể trên.

Mẫu 1 2 3 4 5 Cộng
Tần số 2100 1860 1950 2000 2090 10000

a) Tìm mốt của bảng phân bố tần số đã cho

b) Trong sản xuất, nhà máy nên ưu tiên cho mẫu nào?

Lời giải

a) Ta có x1 = 1 có tần số n1 = 2100 (lớn nhất)

⇒ Mốt của bảng phân bố đã cho là: Mo = 1

b) Trong sản xuất, nhà máy nên ưu tiên cho mẫu số 1

Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 10 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 10 khác nhau.

 

 

 

 

 

 

 

 



#soanbaitap

Không có nhận xét nào:

Đăng nhận xét