Bài 1 (trang 82 SGK Đại số 11): Chứng minh rằng với n ∈ N*, ta có các đẳng thức:
Lời giải:
a. + Với n = 1, ta có:
VT = 3 – 1 = 2
⇒ VT = VP
⇒ (1) đúng với n = 1
+ Giả sử (1) đúng với n = k ≥ 1 nghĩa là:
2 + 5 + 8 + …+ (3k – 1) = k(3k + 1)/2. (*)
Ta cần chứng minh (1) đúng với n = k + 1, tức là :
Thật vậy :
Ta có :
b) + Với n = 1 :
Vậy (2) đúng với n = 1
+ Giả sử đẳng thức đúng với n = k, tức là:
Cần chứng minh (2) đúng với n = k + 1, tức là:
Thật vậy, ta có :
c. + Với n = 1 :
⇒ (3) đúng với n = 1
+ Giả sử đẳng thức (3) đúng với n = k nghĩa là :
Cần chứng minh (3) đúng khi n = k + 1, tức là:
Thật vậy:
Bài 2 (trang 82 SGK Đại số 11): Chứng minh rằng với n ∈ N*
a. n3 + 3n2 + 5n chia hết cho 3.
b. 4n + 15n – 1 chia hết cho 9
c. n3 + 11n chia hết cho 6.
Lời giải:
a. Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
b. 4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
c. Cách 1: Chứng minh quy nạp.
Đặt Un = n3 + 11n
+ Với n = 1 ⇒ U1 = 12 chia hết 6
+ giả sử đúng với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1)
= k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12
= Uk + 3(k2 + k + 4)
Mà: Uk ⋮ 6 (giả thiết quy nạp)
3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)
⇒ Uk + 1 ⋮ 6.
Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 11n
= n3 – n + 12n
= n(n2 – 1) + 12n
= n(n – 1)(n + 1) + 12n.
Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3
⇒ n(n – 1)(n + 1) ⋮ 6.
Lại có: 12n ⋮ 6
⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.
Kiến thức áp dụng
Chứng minh mệnh đề (P) đúng với mọi n ∈ N bằng phương pháp quy nạp:
+ Kiểm tra mệnh đề (P) có đúng với n = 1 không.
+ Giả sử (P) đúng với n = k, cần chứng minh nó cũng đúng với n = k + 1.
Bài 2 (trang 82 SGK Đại số 11): Chứng minh rằng với n ∈ N*
a. n3 + 3n2 + 5n chia hết cho 3.
b. 4n + 15n – 1 chia hết cho 9
c. n3 + 11n chia hết cho 6.
Lời giải:
a. Cách 1: Quy nạp
Đặt An = n3 + 3n2 + 5n
+ Ta có: với n = 1
A1 = 1 + 3 + 5 = 9 chia hết 3
+ giả sử với n = k ≥ 1 ta có:
Ak = (k3 + 3k2 + 5k) chia hết 3 (giả thiết quy nạp)
Ta chứng minh Ak + 1 chia hết 3
Thật vậy, ta có:
Ak + 1 = (k + 1)3 + 3(k + 1)2 + 5(k + 1)
= k3 + 3k2 + 3k + 1 + 3k2 + 6k + 3 + 5k + 5
= (k3 + 3k2 + 5k) + 3k2 + 9k + 9
Theo giả thiết quy nạp: k3 + 3k2 + 5k ⋮ 3
Mà 3k2 + 9k + 9 = 3.(k2 + 3k + 3) ⋮ 3
⇒ Ak + 1 ⋮ 3.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 3n2 + 5n
= n.(n2 + 3n + 5)
= n.(n2 + 3n + 2 + 3)
= n.(n2 + 3n + 2) + 3n
= n.(n + 1)(n + 2) + 3n.
Mà: n(n + 1)(n + 2) ⋮ 3 (tích của ba số tự nhiên liên tiếp)
3n ⋮ 3
⇒ n3 + 3n2 + 5n = n(n + 1)(n + 2) + 3n ⋮ 3.
Vậy n3 + 3n2 + 5n chia hết cho 3 với mọi ∀n ∈ N*
b. 4n + 15n – 1 chia hết cho 9
Đặt An = 4n + 15n – 1
với n = 1 ⇒ A1 = 4 + 15 – 1 = 18 chia hết 9
+ giả sử đúng với n = k ≥ 1 nghĩa là:
Ak = (4k + 15k – 1) chia hết 9 (giả thiết quy nạp)
Ta cần chứng minh: Ak + 1 chia hết 9
Thật vậy, ta có:
Ak + 1 = 4k+1 + 15(k + 1) – 1
= 4.4k + 15k + 15 – 1
= 4.(4k + 15k – 1) – 45k+ 4+ 15 – 1
= 4.(4k +15k- 1) – 45k + 18
= 4. Ak + (- 45k + 18)
Ta có: Ak⋮ 9 và ( - 45k+ 18) = 9(- 5k + 2)⋮ 9
Nên Ak + 1 ⋮ 9
Vậy 4n + 15n – 1 chia hết cho 9 ∀n ∈ N*
c. Cách 1: Chứng minh quy nạp.
Đặt Un = n3 + 11n
+ Với n = 1 ⇒ U1 = 12 chia hết 6
+ giả sử đúng với n = k ≥ 1 ta có:
Uk = (k3 + 11k) chia hết 6 (giả thiết quy nạp)
Ta cần chứng minh: Uk + 1 = (k + 1)3 + 11(k + 1) chia hết 6
Thật vậy ta có:
Uk+1 = (k + 1)3 + 11(k +1)
= k3 + 3k2 + 3k + 1 + 11k + 11
= (k3 + 11k) + 3k2 + 3k + 12
= Uk + 3(k2 + k + 4)
Mà: Uk ⋮ 6 (giả thiết quy nạp)
3.(k2 + k + 4) ⋮ 6. (Vì k2 + k + 4 = k(k + 1) + 4 ⋮2)
⇒ Uk + 1 ⋮ 6.
Vậy n3 + 11n chia hết cho 6 ∀n ∈ N*.
Cách 2: Chứng minh trực tiếp.
Có: n3 + 11n
= n3 – n + 12n
= n(n2 – 1) + 12n
= n(n – 1)(n + 1) + 12n.
Vì n(n – 1)(n + 1) là tích ba số tự nhiên liên tiếp nên có ít nhất 1 thừa số chia hết cho 2 và 1 thừa số chia hết cho 3
⇒ n(n – 1)(n + 1) ⋮ 6.
Lại có: 12n ⋮ 6
⇒ n3 + 11n = n(n – 1)(n + 1) + 12n ⋮ 6.
Kiến thức áp dụng
Chứng minh mệnh đề (P) đúng với mọi n ∈ N bằng phương pháp quy nạp:
+ Kiểm tra mệnh đề (P) có đúng với n = 1 không.
+ Giả sử (P) đúng với n = k, cần chứng minh nó cũng đúng với n = k + 1.
Bài 4 (trang 83 SGK Đại số 11):
a.Tính S1, S2, S3
b.Dự đoán công thức tính tổng Sn và chứng minh bằng quy nạp.
Lời giải:
b. Dự đoán:
Ta chứng minh đẳng thức (1) bằng quy nạp
+ Với n = 1 thì (1) đúng.
+ Giả sử (1) đúng với n = k, tức là
Khi đó:
⇒ (1) đúng với n = k + 1, do đó đúng với mọi n ∈ N*
Kiến thức áp dụng
+ Kiểm tra mệnh đề (P) có đúng với n = 1 không.
+ Giả sử (P) đúng với n = k, cần chứng minh nó cũng đúng với n = k + 1.
Bài 5 (trang 83 SGK Đại số 11): Chứng minh rằng số đường chéo của một đa giác lồi n cạnh là n(n-3)/2
Lời giải:
Đa giác lồi n cạnh có n đỉnh.
Chọn 2 điểm bất kì trong số các đỉnh của một đa giác ta được 1 cạnh hoặc 1 đường chéo của đa giác.
⇒Tổng số cạnh và đường chéo của đa giác bằng:
⇒ số đường chéo của đa giác lồi có n cạnh là:
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét