Thứ Tư, 5 tháng 8, 2020

Phương trình bậc hai với hệ số thực - soanbaitap.com

Bài 1 (trang 140 SGK Giải tích 12): Tìm các căn bậc hai phức của các số sau: -7;-8;-12;-20;-121

Lời giải:

Căn bậc hai của -7 là ±i √7

Căn bậc hai của -8 là ± i 2√2

Căn bậc hai của -12 là ± i2 √3

Căn bậc hai của -20 là ± i 2 √5

Căn bậc hai của -121 là ± 11i

Bài 2 (trang 140 SGK Giải tích 12): Giải các phương trình sau trên tập hợp số phức:

a) -3z2 + 2z - 1 = 0

b) 7z2 + 3z + 2 = 0

c) 5z2 - 7z + 11 = 0

Lời giải:

a) Phương trình -3z2 + 2z - 1 = 0

có Δ' = 12 - 3 = -2

Phương trình có hai nghiệm Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

b) Phương trình 7z2 + 3z + 2 = 0

có Δ = 32 - 4.7.2 = -47 < 0

⇒ Phương trình có hai nghiệm Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

c) Phương trình 5z2 - 7z + 11 = 0

có Δ = 72 - 4.5.11 = -171 < 0

⇒ Phương trình có hai nghiệm Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Kiến thức áp dụng

Phương trình bậc hai ax2 + bx + c = 0

có Δ = b2 - 4ac

+ Nếu Δ > 0, phương trình có hai nghiệm thực phân biệt: Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

+ Nếu Δ < 0, phương trình có hai nghiệm ảo phân biệt Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Bài 3 (trang 140 SGK Giải tích 12): Giải các phương trình sau trên tập hợp số phức:

a) z4 + z2 - 6 = 0

b) z4 + 7z2 + 10 = 0

Lời giải:

a) z4 + z2 – 6 = 0

⇔ z4 – 2z2 + 3z2 – 6 = 0

⇔ z2 .(z2 – 2)+ 3. (z2 -2) = 0

⇔ (z2 – 2)(z2 + 3) = 0

Giải bài 3 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Vậy phương trình có tập nghiệm Giải bài 3 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

b) z4 + 7z2 + 10 = 0

⇔ z4 + 5z2 + 2z2 + 10 = 0

⇔ z2 (z+ 5) + 2.(z2 + 5) = 0

⇔ (z2 + 2)(z2 + 5) = 0

Giải bài 3 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Vậy phương trình có tập nghiệm Giải bài 3 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Kiến thức áp dụng

Căn bậc hai của số thực a âm là Giải bài 3 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Bài 4 (trang 140 SGK Giải tích 12): Cho a, b, c ∈R,a ≠ 0,z1 , z2 là hai nghiệm phân biệt ( thực hoặc phức) của phương trình ax2+bx+c=0. Hãy tính z1+z2 và z1.z2 theo hệ số a, b, c.

Lời giải:

Cách 1 :

Phương trình az2 + bz + c = 0 có Δ = b2 - 4ac

+ TH1 : Δ < 0, phương trình có hai nghiệm phức Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

+ TH2: Δ ≥ 0, theo định lý Vi-et ta có:

Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Cách 2 :

Vì z1; z2 là hai nghiệm của phương trình az2 + bz + c = 0 nên ta có:

a.z12 + bz1 + c = 0 (1)

az22 + bz2 + c = 0 (2).

+ Trừ hai vế tương ứng của (1) cho (2) ta được:

a.(z12 – z22) + b(z1 – z2) = 0

⇔ a.(z1 – z2)(z1 + z2) + b.(z1 – z2) = 0

⇔ a.(z1 + z2) + b = 0 (Vì z1 z2 nên z1 – z2 0).

Giải bài 4 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Kiến thức áp dụng

Phương trình bậc hai ax2 + bx + c = 0

có Δ = b2 - 4ac

+ Nếu Δ > 0, phương trình có hai nghiệm thực phân biệt: Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

+ Nếu Δ = 0, phương trình có nghiệm kép Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

+ Nếu Δ < 0, phương trình có hai nghiệm ảo phân biệt Giải bài 2 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Bài 5 (trang 140 SGK Giải tích 12): Cho z = a + bi là một số phức. Hãy tìm phương trình bậc hai với hệ số thực nhận z và z− làm nghiệm.

Lời giải:

Giải bài 5 trang 140 sgk Giải tích 12 | Để học tốt Toán 12

Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 12 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 12 khác nhau.

 

 

 



#soanbaitap

Không có nhận xét nào:

Đăng nhận xét