Giải bài 4 trang 91 SGK Hình học 11:
Bài 4 trang 91 SGK Hình học 11 thuộc Chương III: Vectơ trong không gian. Quan hệ vuông góc trong không gian. Bài 1: Vectơ trong không gian
Đề bài
Cho hình tứ diện \(ABCD\). Gọi \(M\) và \(N\) lần lượt là trung điểm của \(AB\) và \(CD\). Chứng minh rằng:
a) \(\overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right );\)
b) \(\overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)
Phương pháp giải chi tiết
a) \(\overrightarrow{MN}=\overrightarrow{MA}+\overrightarrow{AD}+\overrightarrow{DN}.\)
\(\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{BC}+\overrightarrow{CN}.\)
Cộng từng vế ta được: \(\overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AD}+\overrightarrow{BC} \right )\)
b)
\(\eqalign{
& \overrightarrow {MN} = \overrightarrow {MA} + \overrightarrow {AC} + \overrightarrow {CN} \cr
& \overrightarrow {MN} = \overrightarrow {MB} + \overrightarrow {BD} + \overrightarrow {DN} \cr} \)
Cộng từng vế ta được: \(\overrightarrow{MN}=\dfrac{1}{2}\left ( \overrightarrow{AC}+\overrightarrow{BD} \right ).\)
Các kiến thức áp dụng giải Bài 4 trang 91 SGK Hình học 11
Sử dụng quy tắc ba điểm.
Giải bài 3 trang 91 SGK Hình học 11 được đăng ở chuyên mục Giải Toán 11 và biên soạn theo phần Toán hình 11 thuộc SKG Toán lớp 11. Bài giải toán lớp 11 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét