Giải bài 9 trang 114 SGK Hình học 11:
Bài 9 trang 114 SGK Hình học 11 thuộc Chương III: Vectơ trong không gian. Quan hệ vuông góc trong không gian. Bài 4: Hai mặt phẳng vuông góc
Đề bài
Cho hình chóp tam giác đều \(S.ABC \) có \(SH\) là đường cao. Chứng minh \(SA ⊥ BC\) và \(SB ⊥ AC\).
Phương pháp giải chi tiết
Chóp tam giác đều nên ta có \(H\) là trực tâm của tam giác \(ABC\)
\(SH ⊥ (ABC) \Rightarrow SH ⊥ BC\)
Và \(AH ⊥ BC\) (vì \(H\) là trực tâm)
Suy ra \( BC ⊥ (SAH)\)
\(SA\subset (SAH)\Rightarrow BC ⊥ SA\).
Chứng minh tương tự, ta có:
\(SH \bot \left( {ABC} \right) \Rightarrow SH \bot AC\).
Mà H là trực tâm của tam giác ABC \( \Rightarrow BH \bot AC\)
\( \Rightarrow AC \bot \left( {SBH} \right);\,\,SB \subset \left( {SBH} \right) \Rightarrow AC \bot SB\)
Các kiến thức áp dụng giải bài 9 trang 114 SGK Hình học 11
Chứng minh \(BC \bot \left( {SAH} \right);\,\,AC \bot \left( {SBH} \right)\).
Giải bài 9 trang 114 SGK Hình học 11 được đăng ở chuyên mục Giải Toán 11 và biên soạn theo phần Toán hình 11 thuộc SKG Toán lớp 11. Bài giải toán lớp 11 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét