Giải bài 82 trang 99 SGK Toán 9 tập 2:
Bài 81 trang 99 SGK Toán 9 tập 2 thuộc Chương III: Góc với Đường tròn. Bài 10: Diện tích hình tròn hình quạt tròn.
Đề bài
Điền vào ô trống trong bảng sau (làm tròn kết quả đến chữ số thập phân thứ nhất)
Phương pháp giải chi tiết
- Dòng thứ nhất:
\( R\) = \(\dfrac{C}{2\pi }\) = \(\dfrac{13,2}{2. 3,14 }\) \(≈ 2,1\) (\(cm\))
\(S = π. R^2 = 3,14.{(2,1)}^2 ≈ 13,8 \)(\(cm^2\))
\({R_{quạt}}\)\(=\dfrac{\pi R^{2}n^{\circ}}{360^{\circ}}\) \(=\dfrac{3,14 .2,1^{2}.47,5}{360}\) \(≈ 1,83\) (\(cm^2\))
- Dòng thứ hai:
\(C = 2πR = 2. 3,14. 2,5 = 15,7\) (cm)
\(S = π. R^2 = 3,14.{(2,5)}^2 ≈ 19,6\) (\(cm^2\))
\(n^0\)\(=\dfrac{S_{quat}.360^{\circ}}{\pi R^{2}}\)\(=\dfrac{12,5.360^{\circ}}{3,14.2,5^{2}}\)\(≈ 229,3^0\)
- Dòng thứ ba:
\(R\) \(=\sqrt{\dfrac{s}{\pi }}\) \(=\sqrt{\dfrac{37,8}{3,14 }}\) \(≈ 3,5\) (\(cm\))
\(C = 2πR = 22\) (\(cm\))
\(n^0\)\(=\dfrac{S_{quạt}.360^{\circ}}{\pi R^{2}}\) \(=\dfrac{10,6.360^{\circ}}{3,14.3,5^{2}}\) \(≈ 99,2^0\)
Điền vào các ô trống ta được các bảng sau:
Các Kiến thức được áp dụng để giải bài 82 trang 99 sgk Toán 9 tập 2
+) Độ dài đường tròn bán kính \(R\) là: \(C=2\pi R.\)
+) Độ dài cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(l = \dfrac180.\)
+) Diện tích hình tròn bán kính \(R\) là: \(S=\pi R^2.\)
+) Diện tích cung tròn \(n^0\) của đường tròn bán kính \(R\) là: \(S = \dfrac360.\)
Giải bài 82 trang 99 SGK Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán hình 9 thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng
Không có nhận xét nào:
Đăng nhận xét