Thứ Tư, 4 tháng 12, 2019

Giải bài 23 trang 119 SGK Toán 9 tập 2

Giải bài 23 trang 119 SGK Toán 9 tập 2:

Bài 23 trang 119 SGK Toán 9 tập 2 thuộc Chương IV: Hình trụ - Hình nón - Hình cầu. Bài 2: Hình nón - hình nón cụt. Diện tích xung quanh hình nón - hính nón cụt.

Đề bài

Viết công thức tính nửa góc ở đỉnh của một hình nón (góc \(\alpha\) của tam giác vuông \(AOS\)- hình 99) sao cho diện tích khai triển mặt nón bằng một phần tư diện tích hình tròn (bán kính \(SA\)).

Phương pháp giải chi tiết

Diện tích hình quạt :

\(S_{quạt} = \dfrac{\pi r^2 n^o}{360^o}= \dfrac{\pi.l^2.90}{360}=\dfrac{\pi.l^2}4.\)

Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\)

Theo đầu bài ta có: \({S_{xq}} = S_{quạt} \Rightarrow πrl= \dfrac{\pi.l^2}4.\)

Vậy \(l = 4r.\)

Suy ra \(\sin \alpha =\dfrac {OA}{SA}= \dfrac{r}l = \dfrac {1}4\) (vì \(l=4r\).)

Vậy \(\alpha= {14^0}28'.\)

Các Kiến thức được áp dụng để giải bài 23 trang 119 sgk Toán 9 tập 2

+) Diện tích hình quạt có số đo \(n^0\) của đường tròn bán kính \(R\) là: \(S=\dfrac{\pi R^2 n}{360}.\)

+) Diện tích xung quanh của hình nón bán kính đáy \(R\) và đường sinh \(l\) là: \(S_{xq}=\pi Rl.\)

Giải bài 23 trang 119 SGK Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán hình 9 thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng



Không có nhận xét nào:

Đăng nhận xét