Giải bài 41 trang 83 SGK Toán 9 tập 2:
Bài 41 trang 83 SGK Toán 9 tập 2 thuộc Chương III: Góc với Đường tròn. Bài 5: Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn.
Đề bài
Qua điểm \(A\) nằm bên ngoài đường tròn \((O)\) vẽ hai cát tuyến \(ABC\) và \(AMN\) sao cho hai đường thẳng \(BN\) và \(CM\) cắt nhau tại một điểm \(S\) nằm bên trong đường tròn.
Chứng minh: \(\widehat A + \widehat {BSM} = 2\widehat {CMN}.\)
Phương pháp giải chi tiết
Xét đường tròn \((O)\) có:
+) \(\widehat A\) là góc có đỉnh nằm ngoài đường tròn \((O)\) chắn cung \(CN\) và \(BM\) \(\Rightarrow \widehat A = \dfrac{sđ\overparen{CN}-sđ\overparen{BM}}{2}\) (1)
+) \(\widehat {BSM}\) là góc có đỉnh nằm trong đường tròn \((O)\) chắn cung \(CN\) và \(BM\) \(\Rightarrow \widehat {BSM}=\dfrac{sđ\overparen{CN}+sđ\overparen{BM}}{2}\) (2)
Cộng (1) và (2) theo vế với vế:
\(\widehat{A}\)+\(\widehat {BSM}\)\(=\dfrac{2sđ\overparen{CN}+(sđ\overparen{BM}-sđ\overparen{BM)}}{2}=sđ \overparen{CN}\) (3)
Mà \(\widehat {CMN}\) là góc nội tiếp chắn cung \(CN\) \(\Rightarrow \widehat {CMN}=\dfrac{sđ\overparen{CN}}{2}\)
\(\Leftrightarrow\) \(2\widehat {CMN}=sđ\overparen{CN}\). (4)
Từ (3) và (4) ta được: \(\widehat A + \widehat {BSM} = 2\widehat {CMN}\) (đpcm).
Các Kiến thức được áp dụng để giải bài 41 trang 83 sgk Toán 9 tập 2
+) Góc có đỉnh nằm ngoài đường tròn có số đo bằng nửa hiệu số đo hai cung bị chắn.
+) Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
+) Số đo của góc nội tiếp bằng nửa số đo cung bị chắn.
Giải bài 41 trang 83 SGK Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán hình 9 thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng
Không có nhận xét nào:
Đăng nhận xét