Thứ Năm, 21 tháng 11, 2019

Giải bài 30 trang 54 SGK Toán 9 tập 2

Giải bài 30 trang 54 SGK Toán 9 tập 2:

Bài 30 trang 54 SGK Toán 9 tập 2 thuộc chương IV của Hàm số y=ax^2 (a≠0) và là Bài 6: Hệ thức Vi-ét ứng dụng

Đề bài

Tìm giá trị của m để phương trình có nghiệm, rồi tính tổng và tích các nghiệm theo m.

a) \({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}m{\rm{ }} = {\rm{ }}0\);

b) \({x^2}+{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\)

Phương pháp giải chi tiết

Câu a)

Phương trình \({x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}m{\rm{ }} = {\rm{ }}0\) có nghiệm khi \(\Delta '{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}m{\rm{ }} \ge {\rm{ }}0\) suy ra \(m ≤ 1\)

Khi đó theo hệ thức Vi-et ta có \({x_{1}} + {\rm{ }}{x_{2}} = {\rm{ }}2\), \({\rm{ }}{x_{1}}.{\rm{ }}{x_2} = {\rm{ }}m\)

Câu b)

Phương trình \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\) có nghiệm khi

\(\Delta '{\rm{ }} = {\rm{ }}{m^{2}} - {\rm{ }}2m{\rm{ }} + {\rm{ }}1{\rm{ }}-{\rm{ }}{m^2} = {\rm{ }}1{\rm{ }}-{\rm{ }}2m{\rm{ }} \ge {\rm{ }}0\)

Suy ra \(m ≤\dfrac{1}{2}\)

Khi đó theo hệ thức Vi-ét ta có \({x_{1}} + {\rm{ }}{x_2} = -{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)\), \({\rm{ }}{x_{1}}.{\rm{ }}{x_2} = {\rm{ }}{m^2}\)

Các Kiến thức được áp dụng để giải bài 30 trang 54 SGK Toán 9 tập 2

+) Phương pháp tìm m để phương trình có nghiệm: Cho phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\), điều kiện để phương trình có nghiệm là: \(\Delta \ge 0\,\,\left( {\Delta ' \ge 0} \right)\)

Trong đó \(\Delta = {b^2} - 4ac;\,\,\Delta ' = b{'^2} - ac;\,b' = \dfrac{b}{2}\)

+) Tính tổng và tích các nghiệm:

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} = - \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Giải bài 30 trang 54 SGK Toán 9 tập 2 được đăng ở chuyên mục Giải Toán 9 và biên soạn theo phần Toán đại 9  thuộc SKG Toán lớp 9. Bài giải toán lớp 9 được biên soạn bởi các thầy cô giáo dạy văn tư vấn, nếu thấy hay hãy chia sẻ và comment để nhiều bạn khác cùng học tập cùng.



Không có nhận xét nào:

Đăng nhận xét