1. Định nghĩa
+ Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.
+ Cung nằm bên trong góc được gọi là cung bị chắn.
2. Định lý.
Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
+ ∠BAC là góc nội tiếp chắn cung nhỏ BC (như hình 1) và chắn cung lớn BC (như hình 2)
+ Ta có thể viết:
3. Hệ quả.
Trong một đường tròn:
+ Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
+ Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
+ Góc nội tiếp (nhỏ hơn hoặc bằng 90°) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
+ Góc nội tiếp chắn nửa đường tròn là góc vuông.
4. Ví dụ cụ thể
Câu 1: Cho tam giác ABC cân tại A (∠A = 90°). Vẽ đường tròn đường kính AB cắt BC tại D, cắt AC tại E. Chứng minh rằng: Tam giác DBE cân.
Hướng dẫn:
Ta có:
+ ∠BDA = 90° (vì ∠BDA là góc nội tiếp chắn nửa đường tròn)
⇒ AD ⊥ BC
Mà ΔABC cân tại A nên AD vừa là đường cao vừa là đường phân giác góc A.
Khi đó ta có:
Câu 1: Cho đường tròn (O; R) đường kính BC cố định. Điểm A di động trên đường tròn khác B và C. Vẽ đường kính AOD. Xác định vị trí điểm A để diện tích ΔABC đạt giá trị lớn nhất, khi đó
Câu 2: Cho nửa đường tròn đường kính AB = 2m, dây CD // AB (C ∈ AD⌢). Tính độ dài các cạnh của hình thang ABCD biết chu vi hình thang bằng 5cm.
Bài 15 (trang 75 SGK Toán 9 Tập 2): Các khẳng định sau đây đúng hay sai?
a) Trong một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.
b) Trong một đường tròn, các góc nội tiếp bằng nhau thì cùng chắn một cung.
Lời giải
a) Đúng (theo hệ quả b).
b) Sai. Vì trong cùng một đường tròn, các góc nội tiếp cùng chắn 1 cung hoặc chắn các cung bằng nhau thì bằng nhau.
Trong một đường tròn, các góc nội tiếp bằng nhau chưa chắc cùng chắn một cung.
Kiến thức áp dụng
Định lý: Trong một đường tròn, số đo của góc nội tiếp bằng nửa số đo của cung bị chắn.
Hệ quả: Trong một đường tròn, các góc nội tiếp bằng nhau chắn các cung bằng nhau.
Bài 16 (trang 75 SGK Toán 9 Tập 2): Xem hình 19 (hai đường tròn có tâm là B, C và điểm B nằm trên đường tròn tâm C).
Lời giải
a) Đường tròn tâm B có là góc nội tiếp chắn cung là góc ở tâm chắn cung
Đường tròn tâm C có là góc nội tiếp chắn cung là góc ở tâm chắn cung
Kiến thức áp dụng
Trong một đường tròn, góc nội tiếp có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
Bài 17 (trang 75 SGK Toán 9 Tập 2): Muốn xác định tâm của một đường tròn mà chỉ dùng êke thì phải làm như thế nào?
Lời giải
Áp dụng hệ quả: Góc nội tiếp chắn nửa đường tròn là góc vuông.
Cách xác định:
+ Đặt đỉnh vuông của eke trùng với một điểm N bất kỳ trên đường tròn, kẻ đường thẳng đi qua cạnh huyền của êke cắt đường tròn tại A và B ta được đường kính AB.
+ Vẫn đặt đỉnh vuông của eke tại N, xoay eke theo hướng khác, kẻ đường thẳng đi qua cạnh huyền của êke cắt đường tròn tại C và D ta được đường kính CD.
+ CD cắt AB tại tâm O của đường tròn.
Bài 18 (trang 75 SGK Toán 9 Tập 2): Một huấn luyện viên cho cầu thủ tập sút bóng vào cầu môn PQ. Bóng được đặt ở các vị trí A, B, C trên một cung tròn như hình 20.
Hãy so sánh các góc
Lời giải
Các điểm A, B, C, Q, P cùng thuộc một đường tròn.
Các góc đều là các góc nội tiếp cùng chắn cung
Kiến thức áp dụng
+ Trong cùng một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.
Bài 18 (trang 75 SGK Toán 9 Tập 2): Một huấn luyện viên cho cầu thủ tập sút bóng vào cầu môn PQ. Bóng được đặt ở các vị trí A, B, C trên một cung tròn như hình 20.
Hãy so sánh các góc
Lời giải
Các điểm A, B, C, Q, P cùng thuộc một đường tròn.
Các góc đều là các góc nội tiếp cùng chắn cung
Kiến thức áp dụng
+ Trong cùng một đường tròn, các góc nội tiếp cùng chắn một cung thì bằng nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét