Thứ Năm, 30 tháng 7, 2020

Phương trình quy về phương trình bậc hai - soanbaitap.com

1. Phương trình trùng phương

Phương trình trùng phương là phương trình có dạng ax4 + bx2 + c = 0 (a ≠ 0)

Giải phương trình ax4 + bx2 + c = 0 (a ≠ 0)

+ Đặt ẩn phụ x2 = t, t ≥ 0

+ Giải phương trình ẩn phụ mới: at2 + bt + c = 0

+ Với mỗi giá trị tìm được của t, lại giải phương trình x2 = t.

Ví dụ: Giải phương trình x4 - 13x2 + 36 = 0

Hướng dẫn:

Đặt x2 = t, t ≥ 0 Khi đó ta được phương trình bậc hai đối với ẩn t là t2 - 13t + 36 = 0 (*)

Ta có: Δt = (-13)2 - 4.36 = 169 - 144 = 25 > 0

Khi đó phương trình (*) có hai nghiệm là:

Lý thuyết: Phương trình quy về phương trình bậc hai - Lý thuyết Toán lớp 9 đầy đủ nhất

+ Với t1 = 9 ta có x2 = 9 có hai nghiệm là x1 = 3; x2 = -3.

+ Với t2 = 4 ta có x2 = 4 có hai nghiệm là x1 = 2; x2 = -2.

2. Phương trình chứa ẩn ở mẫu

Khi giải phương trình chứa ẩn ở mẫu thức, ta làm như sau:

+ Bước 1: Tìm điều kiện xác định của phương trình

+ Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu thức

+ Bước 3: Giải phương trình vừa nhận được

+ Bước 4: Trong các giá trị tìm được của ẩn, loại các giá trị không thỏa mãn điều kiện xác định, các giá trị thỏa mãn điều kiện xác định là nghiệm của phương trình đã cho.

Ví dụ: Giải phương trình

Lý thuyết: Phương trình quy về phương trình bậc hai - Lý thuyết Toán lớp 9 đầy đủ nhất

Hướng dẫn:

Điều kiện x ≠ ±3.

Khi đó ta có

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Ta có: Δ1 = (-4)2 - 4.3 = 16 - 12 = 4 > 0

Khi đó, phương trình (1) có hai nghiệm là:

Lý thuyết: Phương trình quy về phương trình bậc hai - Lý thuyết Toán lớp 9 đầy đủ nhất

Kết hợp điều kiện, vậy phương trình có hai nghiệm là x = 1

3. Phương trình tích

Ta có: Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Để đưa phương trình đã cho về phương trình tích ta dùng phương pháp: đặt nhân tử chung, nhóm hạng tử, phương pháp thêm bớt hay sử dụng hằng đẳng thức đáng nhớ..

Câu 1: Giải phương trình (x2 + 2x - 5)2 = (x2 - x + 5)2

Câu 2: Giải phương trình Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Trả lời câu hỏi Toán 9 Tập 2 Bài 7 trang 55: Giải các phương trình trùng phương:

a) 4x4 + x2 – 5 = 0;

b) 3x4 + 4x2 + 1 = 0.

Lời giải

a) 4x4 + x2 – 5 = 0;

Đặt x2 = t (t ≥ 0). Phương trình trở thành:

4t2 + t - 5 = 0

Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm

t1 = 1; t2 =(-5)/4

Do t ≥ 0 nên t = 1 thỏa mãn điều kiện

Với t = 1, ta có: x2 = 1 ⇔ x = ±1

Vậy phương trình có 2 nghiệm x1 = 1; x2 = -1

b) 3x4 + 4x2 + 1 = 0

Đặt x2 = t (t ≥ 0). Phương trình trở thành:

3t2 + 4t + 1 = 0

Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm

t1 = -1; t2 = (-1)/3

Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0

Vậy phương trình đã cho vô nghiệm.

Trả lời câu hỏi Toán 9 Tập 2 Bài 7 trang 55: Giải phương trình

Giải bài tập Toán 9 | Giải Toán lớp 9

Bằng cách điền vào các chỗ trống (…) và trả lời các câu hỏi.

- Điều kiện: x ≠ …

- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = … ⇔ x2 – 4x + 3 = 0.

- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = …; x2 = …

Hỏi x1 có thỏa mãn điều kiện nói trên không ? Tương tự, đối với x2 ?

Vậy nghiệm của phương trình đã cho là:....

Lời giải

- Điều kiện: x ≠ ±3

- Khử mẫu và biến đổi, ta được: x2 – 3x + 6 = x + 3 ⇔ x2 – 4x + 3 = 0.

- Nghiệm của phương trình x2 – 4x + 3 = 0 là: x1 = 1; x2 = 3

x1 có thỏa mãn điều kiện nói trên

x2 không thỏa mãn điều kiện nói trên

Vậy nghiệm của phương trình đã cho là: x = 1

Bài 34 (trang 56 SGK Toán 9 Tập 2): Giải các phương trình trùng phương:

a) x4 – 5x2 + 4 = 0;

b) 2x4 – 3x2 – 2 = 0;

c) 3x4 + 10x2 + 3 = 0

Lời giải

a) x4 – 5x2 + 4 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : t2 – 5t + 4 = 0 (2)

Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm t1 = 1; t2 = c/a = 4

Cả hai giá trị đều thỏa mãn điều kiện.

+ Với t = 1 ⇒ x2 = 1 ⇒ x = 1 hoặc x = -1;

+ Với t = 4 ⇒ x2 = 4 ⇒ x = 2 hoặc x = -2.

Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.

b) 2x4 – 3x2 – 2 = 0; (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 2t2 – 3t – 2 = 0 (2)

Giải (2) : Có a = 2 ; b = -3 ; c = -2

⇒ Δ = (-3)2 - 4.2.(-2) = 25 > 0

⇒ Phương trình có hai nghiệm

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có giá trị t1 = 2 thỏa mãn điều kiện.

+ Với t = 2 ⇒ x2 = 2 ⇒ x = √2 hoặc x = -√2;

Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.

c) 3x4 + 10x2 + 3 = 0 (1)

Đặt x2 = t, điều kiện t ≥ 0.

Khi đó (1) trở thành : 3t2 + 10t + 3 = 0 (2)

Giải (2) : Có a = 3; b' = 5; c = 3

⇒ Δ’ = 52 – 3.3 = 16 > 0

⇒ Phương trình có hai nghiệm phân biệt

Giải bài 34 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều không thỏa mãn điều kiện.

Vậy phương trình (1) vô nghiệm.

Kiến thức áp dụng

Phương trình có dạng: ax4 + bx2 + c = 0 (a ≠ 0) gọi là phương trình trùng phương.

Giải phương trình trùng phương:

Bước 1: Đặt x2 = t; t ≥ 0. Khi đó ta đưa được phương trình ban đầu về phương trình bậc hai ẩn t.

Bước 2: Giải phương trình bậc hai ẩn t, đối chiếu với điều kiện t ≥ 0.

Bước 3: Từ nghiệm t vừa tìm được, ta thay trở lại x2 = t để tìm x và kết luận nghiệm.

Bài 35 (trang 56 SGK Toán 9 Tập 2): Giải các phương trình:

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lời giải

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔ (x + 3)(x – 3) + 2.3 = 3x(1 – x)

⇔ x2 – 9 + 6 = 3x – 3x2

⇔ x2 – 9 + 6 – 3x + 3x2 = 0

⇔ 4x2 – 3x – 3 = 0

Có a = 4; b = -3; c = -3 ⇒ Δ = (-3)2 – 4.4.(-3) = 57 > 0

Phương trình có hai nghiệm

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ 5; x ≠ 2.

Quy đồng và khử mẫu ta được :

(x + 2)(2 – x) + 3(2 – x)(x – 5) = 6(x – 5)

⇔ 4 – x2 + 6x – 3x2 – 30 + 15x = 6x – 30

⇔ 4 – x2 + 6x – 3x2 – 30 + 15x – 6x + 30 = 0

⇔ -4x2 + 15x + 4 = 0

Có a = -4; b = 15; c = 4 ⇒ Δ = 152 – 4.(-4).4 = 289 > 0

Phương trình có hai nghiệm phân biệt:

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai giá trị đều thỏa mãn điều kiện.

Vậy phương trình có tập nghiệm Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Điều kiện xác định: x ≠ -1; x ≠ -2.

Quy đồng và khử mẫu ta được:

4.(x + 2) = -x2 – x + 2

⇔ 4x + 8 = -x2 – x + 2

⇔ 4x + 8 + x2 + x – 2 = 0

⇔ x2 + 5x + 6 = 0.

Có a = 1; b = 5; c = 6 ⇒ Δ = 52 – 4.1.6 = 1 > 0

⇒ Phương trình có hai nghiệm phân biệt:

Giải bài 35 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Chỉ có nghiệm x2 = -3 thỏa mãn điều kiện xác định.

Vậy phương trình có nghiệm x = -3.

Kiến thức áp dụng

Giải phương trình chứa ẩn ở mẫu thức:

Bước 1: Tìm điều kiện xác định của phương trình.

Bước 2: Quy đồng, khử mẫu

Bước 3: Giải phương trình nhận được

Bước 4: Đối chiếu nghiệm thu được với điều kiện xác định và kết luận nghiệm.

Bài 36 (trang 56 SGK Toán 9 Tập 2): Giải các phương trình:

a) (3x2 – 5x + 1)(x2 – 4) = 0;

b) (2x2 + x – 4)2 – (2x – 1)2 = 0.

Lời giải

a) (3x2 – 5x + 1)(x2 – 4) = 0

⇔ 3x2 – 5x + 1 = 0 (1)

hoặc x2 – 4 = 0 (2)

+ Giải (1): 3x2 – 5x + 1 = 0

Có a = 3; b = -5; c = 1 ⇒ Δ = (-5)2 – 4.3 = 13 > 0

Phương trình có hai nghiệm: Giải bài 36 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giải (2): x2 – 4 = 0 ⇔ x2 = 4 ⇔ x = 2 hoặc x = -2.

Vậy phương trình có tập nghiệm Giải bài 36 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

b) (2x2 + x – 4)2 – (2x – 1)2 = 0

⇔ (2x2 + x – 4 – 2x + 1)(2x2 + x – 4 + 2x – 1) = 0

⇔ (2x2 – x – 3)(2x2 + 3x – 5) = 0

⇔ 2x2 – x – 3 = 0 (1)

hoặc 2x2 + 3x – 5 = 0 (2)

+ Giải (1): 2x2 – x – 3 = 0

Có a = 2; b = -1; c = -3 ⇒ a – b + c = 0

⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 3/2.

+ Giải (2): 2x2 + 3x – 5 = 0

Có a = 2; b = 3; c = -5 ⇒ a + b + c = 0

⇒ Phương trình có hai nghiệm x = 1 và x = c/a = -5/2.

Vậy phương trình có tập nghiệm Giải bài 36 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Phương trình tích: A(x).B(x).C(x)…. = 0 ⇔ Giải bài 36 trang 56 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm x1 = 1; nghiệm còn lại x2 = c/a.

+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a – b + c = 0 thì phương trình có một nghiệm x1 = -1; nghiệm còn lại x2 = -c/a.

Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 9 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán hình 9 và Toán đại 9. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 9 khác nhau.

 

 



#soanbaitap

Không có nhận xét nào:

Đăng nhận xét