1. Hàm số y = ax2 (a ≠ 0)
Hàm số y = ax2 (a ≠ 0) : Hàm số xác định với mọi số thực x
Tính chất biến thiên:
+ Nếu a > 0 thì hàm số đồng biến khi x > 0, nghịch biến khi x < 0.
+ Nếu a < 0 thì hàm đồng biến khi x < 0, nghịch biến khi x > 0.
Đồ thị hàm số là một đường Parabol nhận gốc tọa độ O làm đỉnh, nhận trục tung làm trục đối xứng. Khi a > 0 thì Parabol có bề lõm quay lên trên, khi a < 0 thì Parabol có bề lõm quay xuống dưới.
2. Phương trình bậc hai một ẩn
Phương trình bậc hai một ẩn là phương trình có dạng: ax2 + bx + c = 0. Trong đó x là ẩn số; a, b, c là những số cho trước gọi là các hệ số và a ≠ 0.
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 - 4ac.
+ Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt
+ Nếu Δ = 0 thì phương trình có nghiệm kép là
+ Nếu Δ < 0 thì phương trình vô nghiệm.
Đối với phương trình ax2 + bx + c = 0 (a ≠ 0) và b = 2b'; Δ' = b'2 - ac.
+ Nếu Δ' > 0, phương trình có hai nghiệm phân biệt
+ Nếu Δ' = 0, phương tình có nghiệm kép là
+ Nếu Δ' < 0, phương trình đã cho vô nghiệm.
3. Định lý Vi – ét và ứng dụng
Định lý Viet: Nếu x1, x2 là hai nghiệm của phương trình
ax2 + bx + c = 0, (a ≠ 0) thì
Chú ý: Trước khi sử dụng định lý Viet, chúng ta cần kiểm tra điều kiện phương trình có nghiệm, nghĩa là Δ ≥ 0.
Một số ứng dụng cơ bản của định lý Viet
+ Nhẩm nghiệm của một phương trình bậc hai:
Nếu a + b + c = 0 thì phương trình có hai nghiệm là x1 = 1; x2 = c/a.
Nếu a - b + c = 0 thì phương trình có hai nghiệm là x1 = -1; x2 = -c/a.
+ Tính giá trị của biểu thức g(x1, x2) trong đó g(x1, x2) là biểu thức đối xứng giữa hai nghiệm x1, x2 của phương trình (*):
Bước 1: Kiểm tra điều kiện Δ ≥ 0, sau đó áp dụng định lý Viet.
Bước 2: Biểu diễn biểu thức g(x1, x2) theo S = x1 + x2, P = x1.x2 từ đó tính được g(x1, x2).
Một số biểu thức đối xứng giữa hai nghiệm thường gặp:
+ Lập phương trình bậc hai có hai nghiệm là x1, x2 cho trước:
⋅ Bước 1: Tính S = x1 + x2; P = x1.x2.
⋅ Bước 2: Phương trình bậc hai nhận hai nghiệm x1, x2 là X2 - S.X + P = 0.
4. Phương trình quy về phương trình bậc hai
a) Phương trình trùng phương
Phương trình trùng phương là phương trình có dạng ax4 + bx2 + c = 0 (a ≠ 0)
Giải phương trình ax4 + bx2 + c = 0 (a ≠ 0)
+ Đặt ẩn phụ x2 = t, t ≥ 0
+ Giải phương trình ẩn phụ mới: at2 + bt + c = 0
+ Với mỗi giá trị tìm được của t, lại giải phương trình x2 = t.
b) Phương trình chứa ẩn ở mẫu
Khi giải phương trình chứa ẩn ở mẫu thức, ta làm như sau:
+ Bước 1: Tìm điều kiện xác định của phương trình
+ Bước 2: Quy đồng mẫu thức hai vế rồi khử mẫu thức
+ Bước 3: Giải phương trình vừa nhận được
+ Bước 4: Trong các giá trị tìm được của ẩn, loại các giá trị không thỏa mãn điều kiện xác định, các giá trị thỏa mãn điều kiện xác định là nghiệm của phương trình đã cho.
Câu 1: Biết đồ thị của hàm số , (a ≠ 0) đi qua điểm M (3; -6) . Hãy xác định giá trị của a
Câu 2: Cho hàm số y = 2x2 có đồ thị là (P). Tìm trên (P) các điểm có tung độ bằng 4, vẽ đồ thị (P).
Câu 3: Tìm hàm số y = ax2 biết đồ thị của nó đi qua điểm A(-1; 2) Với hàm số tìm được hãy tìm các điểm trên đồ thị có tung độ là 8.
Câu 4: Cho Parabol (P): y = x2 và đường thẳng d: (2m - 1)x - m + 2 (m là tham số)
a) Chứng minh rằng với mọi m đường thẳng d luôn cắt (P) tại hai điểm phân biệt.
b) Tìm các giá trị của m để đường thẳng d luôn cắt (P) tại hai điểm phân biệt A(x1; y1), B(x2; y2) thỏa x1y1 + x2y2 .
Câu 5: Cho Parabol (P): y = x2 và đường thẳng (d): y = 4x + 9 .
a) Vẽ đồ thị (P)
b) Viết phương trình đường thẳng (d1) biết (d1) song song với đường thẳng (d) và (d1) tiếp xúc (P)
Câu 6: Cho parabol (P): y = x2 và đường thẳng (d): y = -2ax - 4a (với a là tham số )
a) Tìm tọa độ giao điểm của (d) và (P) khi a = - 1/2 .
b) Tìm tất cả các giá trị của a để đường thẳng (d) cắt (P) taị hai điểm phân biệt có hoành độ x1; x2 thỏa mãn |x1| + |x2| = 3 .
Câu 7: Cho hai hàm số y = x2 và y = mx + 4, với m là tham số.
a) Khi m = 3 , tìm tọa độ các giao điểm của hai đồ thị hàm số trên.
b) Chứng minh rằng với mọi giá trị m , đồ thị của hai hàm số đã cho luôn cắt nhau tại hai điểm phân biệt A1(x1; y1) và A2(x2; y2) Tìm tất cả các giá trị của m sao cho (y1)2 + (y2)2 = 72 .
Câu 8: Trong mặt phẳng tọa độ Oxy cho parabol (P) có phương trình và hai điểm A, B thuộc (P) có hoành độ lần lượt là xA = -1, xB = 2
a) Tìm tọa độ của hai điểm A, B.
b) Viết phương trình đường thẳng (d) đi qua hai điểm A, B.
c) Tính khoảng cách từ điểm O (gốc tọa độ) tới đường thẳng (d) .
Câu 9: Cho parabol (P): y = 2x2 và đường thẳng (d): y = x + 1.
a) Vẽ đồ thị của (P) và (d) trên cùng hệ trục tọa độ.
b) Bằng phép tính, xác định tọa độ giao điểm A và B của (P) và (d) Tính độ dài đoạn thẳng AB
Câu 10: Một người đi xe đạp từ A đến B cách nhau 24km. Khi đi từ B trở về A người đó tăng vận tốc thêm 4km/h so với lúc đi, nên thời gian về ít hơn thời gian đi là 30 phút. Tính vận tốc của xe đạp khi đi từ A đến B.
Câu 11: Quãng đường AB dài 120 km. Lúc 7h sang một xe máy đi từ A đến B. Đi được 3/4 quãng đường xe bị hỏng phải dừng lại 10 phút để sửa rồi đi tiếp với vận tốc kém vận tốc lúc đầu 10km/h. Biết xe máy đến B lúc 11h40 phút trưa cùng ngày. Giả sử vận tốc xe máy trên 3/4 quãng đường đầu không đổi và vận tốc xe máy trên 1/4 quãng đường sau cũng không đổi. Hỏi xe máy bị hỏng lúc mấy giờ?
Câu 12: Một công nhân theo kế hoạch phải làm 85 sản phẩm trong một khoảng thời gian dự định. Nhưng do yêu cầu đột xuất, người công nhân đó phải làm 96 sản phẩm. Do người công nhân mỗi giờ đã làm tăng thêm 3 sản phẩm nên người đó đã hoàn thành công việc sớm hơn so với thời gian dự định là 20 phút. Tính xem theo dự định mỗi giờ người đó phải làm bao nhiêu sản phẩm, biết rằng mỗi giờ chỉ làm được không quá 20 sản phẩm.
Bài 54 (trang 63 SGK Toán 9 Tập 2): Vẽ đồ thị của hai hàm số và trên cùng một hệ trục tọa độ.
a)Đường thẳng đi qua B(0; 4) và song song với trục Ox có dạng : y =4 .
Xét phương trình hoành độ giao điểm:
Vậy hoành độ của M là x=-4 và M’ là x =4
b) Tìm trên đồ thị của hàm số điểm N có cùng hoành độ với M, điểm N’ có cùng hoành độ với M’. Đường thẳng NN’ có song song với Ox không? Vì sao? Tìm tung độ điểm N và N’ bằng hai cách:
- Ước lượng trên hình vẽ;
- Tính toán theo công thức.
Lời giải
- Bảng giá trị:
x | -4 | -2 | 0 | 2 | 4 |
4 | 1 | 0 | 1 | 4 | |
-4 | -1 | 0 | -1 | -4 |
- Vẽ đồ thị:
a) Đường thẳng qua B(0; 4) song song với Ox cắt đồ thị tại hai điểm M, M' (xem hình). Từ đồ thị ta có hoành độ của M là x = 4, của M' là x = - 4.
b) + Từ điểm M và M’ kẻ đường thẳng song song với trục Oy cắt đồ thị tại N và N’.
+ MM’N’N là hình chữ nhật ⇒ NN’ // MM’ // Ox.
Vậy NN’ // Ox.
+ Tìm tung độ N và N’.
Từ hình vẽ ta nhận thấy : N(-4 ; -4) ; N’(4 ; -4).
Tính toán :
Bài 55 (trang 63 SGK Toán 9 Tập 2): Cho phương trình: x2 - x - 2 = 0.
a) Giải phương trình.
b) Vẽ hai đồ thị y = x2 và y = x + 2 trên cùng một hệ trục tọa độ.
c) Chứng tỏ rằng hai nghiệm tìm được trong câu a) là hoành độ giao điểm của hai đồ thị.
Lời giải
a) x2 – x – 2 = 0
Có a = 1; b = -1; c = -2 ⇒ a – b + c = 0
⇒ Phương trình có hai nghiệm x = -1 và x = -c/a = 2.
Vậy tập nghiệm của phương trình là S = {-1; 2}
b) + Đường thẳng y = x + 2 cắt trục Ox tại (-2; 0) và cắt Oy tại (0; 2).
+ Parabol y = x2 đi qua các điểm (-2; 4); (-1; 1); (0; 0); (1; 1); (2; 4).
c) Hoành độ giao điểm của hai đồ thị là nghiệm của phương trình:
Phương trình (*) chính là phương trình đã giải ở ý (a) Do đó hai nghiệm ở câu (a) chính là hoành độ giao điểm của hai đồ thị
Bài 56 (trang 63 SGK Toán 9 Tập 2): Giải các phương trình:
a) 3x4 – 12x2 + 9 = 0;
b) 2x4 + 3x2 – 2 = 0;
c) x4 + 5x2 + 1 = 0.
Lời giải
Cả ba phương trình trên đều là phương trình trùng phương.
a) 3x4 – 12x2 + 9 = 0 (1)
Đặt x2 = t, t ≥ 0.
(1) trở thành: 3t2 – 12t + 9 = 0 (2)
Giải (2):
Có a = 3; b = -12; c = 9
⇒ a + b + c = 0
⇒ (2) có hai nghiệm t1 = 1 và t2 = 3.
Cả hai nghiệm đều thỏa mãn điều kiện.
+ t = 3 ⇒ x2 = 3 ⇒ x = ±√3.
+ t = 1 ⇒ x2 = 1 ⇒ x = ±1.
Vậy phương trình có tập nghiệm
b) 2x4 + 3x2 – 2 = 0 (1)
Đặt x2 = t, t ≥ 0.
(1) trở thành: 2t2 + 3t – 2 = 0 (2)
Giải (2) :
Có a = 2 ; b = 3 ; c = -2
⇒ Δ = 32 – 4.2.(-2) = 25 > 0
⇒ (2) có hai nghiệm
t1 = -2 < 0 nên loại.
Vậy phương trình có tập nghiệm
c) x4 + 5x2 + 1 = 0 (1)
Đặt x2 = t, t > 0.
(1) trở thành: t2 + 5t + 1 = 0 (2)
Giải (2):
Có a = 1; b = 5; c = 1
⇒ Δ = 52 – 4.1.1 = 21 > 0
⇒ Phương trình có hai nghiệm:
Cả hai nghiệm đều < 0 nên không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Bài 57 (trang 63 SGK Toán 9 Tập 2): Giải các phương trình:
Lời giải
a) 5x2 – 3x + 1 = 2x + 11
⇔ 5x2 – 3x + 1 – 2x – 11 = 0
⇔ 5x2 – 5x – 10 = 0
Có a = 5; b = -5; c = -10 ⇒ a - b + c = 0
⇒ Phương trình có hai nghiệm: x1 = -1 và x2 = -c/a = 2.
Vậy phương trình có tập nghiệm S = {-1; 2}.
⇔ 6x2 – 20x = 5(x + 5)
⇔ 6x2 – 20x – 5x – 25 = 0
⇔ 6x2 – 25x – 25 = 0
Có a = 6; b = -25; c = -25
⇒ Δ = (-25)2 – 4.6.(-25) = 1225 > 0
⇒ Phương trình có hai nghiệm
Vậy phương trình có tập nghiệm
⇔ x2 = 10 – 2x
⇔ x2 + 2x – 10 = 0
Có a = 1; b = 2; c = -10 ⇒ Δ’ = 12 – 1.(-10) = 11 > 0
⇒ Phương trình có hai nghiệm
Cả hai nghiệm đều thỏa mãn điều kiện xác định.
Vậy phương trình có tập nghiệm
⇔ (x + 0,5).(3x – 1) = 7x + 2
⇔ 3x2 + 1,5x – x – 0,5 = 7x + 2
⇔ 3x2 – 6,5x – 2,5 = 0.
Vậy phương trình có tập nghiệm
⇒ Phương trình có hai nghiệm
Vậy phương trình có tập nghiệm
Phương trình có hai nghiệm:
Vậy phương trình có tập nghiệm Giải các phương trình:
a) 1,2x3 – x2 – 0,2x = 0;
b) 5x3 – x2 – 5x + 1 = 0.
Lời giải
a) 1,2x3 – x2 – 0,2x = 0
⇔ 0,2x.(6x2 – 5x – 1) = 0
Giải (1): 6x2 – 5x – 1 = 0
có a = 6; b = -5; c = -1
⇒ a + b + c = 0
⇒ (1) có hai nghiệm x1 = 1 và x2 = c/a = -1/6.
Vậy phương trình ban đầu có tập nghiệm
b) 5x3 – x2 – 5x + 1 = 0
⇔ x2(5x – 1) – (5x – 1) = 0
⇔ (x2 – 1)(5x – 1) = 0
⇔ (x – 1)(x + 1)(5x – 1) = 0
Vậy phương trình có tập nghiệm
Bài 60 (trang 64 SGK Toán 9 Tập 2): Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:
Lời giải
Theo định lý Vi-et ta có: phương trình ax2 + bx + c = 0 có hai nghiệm x1; x2 thì:
Ta sử dụng một trong hai biểu thức trên để tìm nghiệm còn lại.
Ở bài giải dưới đây ta sẽ sử dụng điều kiện:
(Các bạn có thể làm cách 2 sử dụng điều kiện ).
d) x2 - 2mx + m - 1 = 0 (1)
Vì x1 = 2 là một nghiệm của pt (1) nên:
22 - 2m.2 + m - 1 = 0
⇔ 4- 4 m+ m – 1 = 0
⇔ 3- 3m = 0
⇔ m = 1
Khi m = 1 ta có: x1.x2 = m - 1 (hệ thức Vi-ét)
⇔ 2.x2 = 0 (vì x1 = 2 và m = 1)
⇔ x2 = 0
Bài 61 (trang 64 SGK Toán 9 Tập 2): Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 12, uv = 28 và u > v
b) u + v = 3, uv = 6
Lời giải
a) S = 12, P = 28 ⇒ S2 – 4P = 32 > 0
⇒ u, v là hai nghiệm của phương trình: x2 – 12x + 28 = 0.
Có a = 1; b = -12; c = 28 ⇒ Δ’ = (-6)2 – 28 = 8 > 0
Phương trình có hai nghiệm x1 = 6 + 2√2; x2 = 6 - 2√2
Vì u > v nên u = 6 + 2√2 và v = 6 - 2√2
b) S = 3; P = 6 ⇒ S2 – 4P = -15 < 0
Vậy không tồn tại u, v thỏa mãn yêu cầu.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 9 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán hình 9 và Toán đại 9. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 9 khác nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét