Bài 65 (trang 137 SGK Toán 7 Tập 1): Cho ΔABC cân ở A (∠A < 90o). Vẽ BH ⊥ AC (H ∈ AC), CK ⊥ AB (K ∈ AB).
a) Chứng minh rằng AH = HK
b) Gọi I là giao điểm của BH và CK. Chứng minh rằng AI là tia phân giác của góc A
Lời giải:
a) Xét ΔABH vuông tại H và ΔACK vuông tại K có:
AB = AC (Do ΔABC cân tại A)
góc A chung
Nên ΔABH = ΔACK (cạnh huyền – góc nhọn) ⇒ AH = AK (hai cạnh tương ứng).
b) Xét ΔAIK vuông tại K và ΔAIH vuông tại H có:
AH = AK (theo phần a)
AI chung
⇒ ΔAIK = ΔAIH (cạnh huyền – cạnh góc vuông).
⇒ góc IAK = góc IAH (hai góc tương ứng)
Vậy AI là tia phân giác của góc A.
Bài 66 (trang 137 SGK Toán 7 Tập 1): Tìm các tam giác bằng nhau trên hình 148.
Lời giải:
+ Hai tam giác vuông AMD và AME có:
AM chung
⇒ ΔAMD = ΔAME ( cạnh huyền - góc nhọn)
⇒ MD = ME và AD = AE ( Hai cạnh tương ứng) (1)
+ Hai tam giác vuông MDB và MEC có
MB = MC (GT)
MD = ME (chứng minh trên)
⇒ ΔMDB = ΔMEC ( cạnh huyền – cạnh góc vuông)
⇒ BD=CE ( hai cạnh tương ứng) (2)
Từ (1) và (2) ⇒ AD+BD=AE+CE ⇒ AB=AC.
+ Xét ΔAMB và ΔAMC có:
MB = MC (GT)
AB = AC (chứng minh trên)
AM chung
⇒ ΔAMB = ΔAMC (c.c.c)
Kiến thức áp dụng
+ Dựa vào trường hợp bằng nhau về cạnh huyền và góc nhọn:
Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác đó bằng nhau
+ Dựa vào trường hợp bằng nhau về cạnh huyền và cạnh góc vuông:
Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
+ Dựa vào trường hợp bằng nhau thứ nhất của tam giác.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 7 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán Đại 7 và Toán Hình 7. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 7 khác nhau
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét