1. Quy tắc nhân đa thức với đa thức
Muốn nhân một đa thưc với một đa thức ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Tích của hai đa thức là một đa thức
2. Công thức nhân đa thức và đa thức
Cho A, B, C, D là các đa thức ta có:
( A + B ).( C + D ) = A.( C + D ) + B.( C + D ) = AC + AD + BC + BD.
Ví dụ 1: Thực hiện các phép tính sau:
a, ( x -2y )( x2y2 - xy + 2y )
b, ( 1/2xy -1 ).( x3 -2x -6 )
Hướng dẫn:
a) Ta có: ( x -2y )( x2y2 - xy + 2y ) = x( x2y2 - xy + 2y ) - 2y( x2y2 - xy + 2y )
= x3y2 - x2y + 2xy - 2x2y3 + 2xy2 - 4y2
b) Ta có: ( 1/2xy -1 ).( x3 -2x -6 ) = 1/2xy.( x3 -2x -6 ) - ( x3 -2x -6 )
= 1/2x4y - x2y - 3xy - x3 + 2x + 6.
Bài 1: Thực hiện các phép tính sau
a, ( x2 -1 )( x2 + 2x )
b, ( x + 3 )( x2 + 3x -5 )
c, ( x -2y )( x2y2 - xy + 2y )
d, ( 1/2xy -1 )( x3 -2x -6 )
Hướng dẫn:
a) Ta có: ( x2 -1 )( x2 + 2x ) = x2( x2 + 2x ) - ( x2 + 2x )
= x4 + 2x3 - x2 - 2x
b) Ta có ( x + 3 )( x2 + 3x -5 ) = x( x2 + 3x -5 ) + 3( x2 + 3x -5 )
= x3 + 3x2 - 5x + 3x2 + 9x - 15 = x3 + 6x2 + 4x - 15
c) Ta có ( x -2y )( x2y2 - xy + 2y ) = x( x2y2 - xy + 2y ) - 2y( x2y2 - xy + 2y )
= x3y2 - x2y + 2xy - 2x2y3 + 2xy2 - 4y2
d) Ta có ( 1/2xy -1 )( x3 -2x -6 ) = 1/2xy( x3 -2x -6 ) - ( x3 -2x -6 )
= 1/2x4y - x2y - 3xy - x3 + 2x + 6
Bài 2: Tìm x biết
a. (x + 2)(x + 3) - (x - 2)(x + 5) = 6
b. 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) = 0
Hướng dẫn:
a) Ta có:
Vậy giá trị x cần tìm là x = -5
b) Ta có 3( 2x - 1 )( 3x - 1 ) - ( 2x - 3 )( 9x - 1 ) = 0
⇔ 3( 6x2 - 2x - 3x + 1 ) - ( 18x2 - 2x - 27x + 3 ) = 0
⇔ 18x2 - 15x + 3 - 18x2 + 29x - 3 = 0
⇔ 14x = 0 ⇔ x = 0
Vậy giá trị x cần tìm là x = 0.
Trả lời câu hỏi Toán 8 Tập 1 Bài 2 trang 7: Nhân đa thức xy – 1 với đa thức x3 – 2x – 6.
Lời giải
( xy – 1).(x3 – 2x – 6) = xy.(x3 – 2x – 6) + (-1).(x3 – 2x – 6)
= xy.x3 + xy.(-2x) + xy.(-6) + (-1).x3 + (-1).(-2x) + (-1).(-6)
= x(1 + 3)y - x(1 + 1)y - 3xy - x3 + 2x + 6
= x4y-x2 y - 3xy - x3 + 2x + 6
= x4y - x3 - x2y - 3xy + 2x + 6
Trả lời câu hỏi Toán 8 Tập 1 Bài 2 trang 7: Làm tính nhân:
a) (x + 3)(x2 + 3x – 5);
b) (xy – 1)(xy + 5).
Lời giải
a) (x + 3)(x2 + 3x – 5)
= x.(x2 + 3x – 5) + 3.(x2 + 3x – 5)
= x.x2 + x.3x + x.(–5) + 3.x2 + 3.3x + 3.(–5)
= x3 + 3x2 – 5x + 3x2 + 9x – 15
= x3 + (3x2 + 3x2) + (9x – 5x) – 15
= x3 + 6x2 + 4x – 15.
b) (xy – 1)(xy + 5)
= xy.(xy + 5) + (–1).(xy + 5)
= xy.xy + xy.5 + (–1).xy + (–1).5
= x2y2 + 5xy – xy – 5
= x2y2+ 4xy – 5.
Trả lời câu hỏi Toán 8 Tập 1 Bài 2 trang 7: Viết biểu thức tính diện tích của một hình chữ nhật theo x và y, biết hai kích thước của hình chữ nhật đó là (2x + y) và (2x – y).
Áp dụng: Tính diện tích hình chữ nhật khi x = 2,5 mét và y = 1 mét.
Lời giải
Biểu thức tính diện tích hình chữ nhật là:
S = (2x + y).(2x – y)
= 2x.(2x – y) + y.(2x – y)
= 2x.2x + 2x.(–y) + y.2x + y.(–y)
= 4x2 – 2xy + 2xy – y2
= 4x2 – y2
Áp dụng : khi x = 2,5 mét và y = 1 mét
⇒ S = 4.2,52 – 12 = 4.6,25 – 1 = 25 – 1 = 24
Vậy diện tích của hình chữ nhật là: 24 mét vuông.
Bài 7 (trang 8 SGK Toán 8 Tập 1): Làm tính nhân
a) (x2 – 2x + 1)(x – 1)
b) (x3 – 2x2 + x – 1)(5- x)
Lời giải:
a) (x2 – 2x + 1)( x – 1)
= x2.(x – 1) + (–2x).(x – 1) + 1.(x – 1)
= x2.x + x2.(– 1) + (– 2x).x + (–2x).(–1) + 1.x + 1.(–1)
= x3 – x2 – 2x2 + 2x + x – 1
= x3 – (x2 + 2x2) + (2x + x) – 1
= x3 – 3x2 + 3x – 1
b) (x3 – 2x2 + x – 1)(5 – x)
= (x3 – 2x2 + x – 1).5 + (x3 – 2x2 + x – 1).(–x)
= x3.5 + (–2x2).5 + x.5 + (–1).5 + x3.(–x) + (–2x2).(–x) + x.(–x) + (–1).(–x)
= 5x3 – 10x2 + 5x – 5 – x4 + 2x3 – x2 + x
= –x4 + (5x3 + 2x3) – (10x2 + x2) + (5x + x) – 5
= –x4 + 7x3 – 11x2 + 6x – 5
Ta có:
(x3 – 2x2 + x – 1).(x – 5)
= (x3 – 2x2 + x – 1).[–(5 – x)]
= – (x3 – 2x2 + x – 1).(5 – x)
= – (–x4 + 7x3 – 11x2 + 6x – 5)
= x4 – 7x3 + 11x2 – 6x + 5.
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
+ Với hai đa thức A, B bất kì ta luôn có : A.(–B) = –A.B
Bài 8 (trang 8 SGK Toán 8 Tập 1): Làm tính nhân:
Lời giải:
b) (x2 – xy + y2)(x + y)
= (x2 – xy + y2).x + (x2 – xy + y2).y
= x2.x + (–xy).x + y2.x + x2.y + (–xy).y + y2.y
= x3 – x2y + xy2 + x2y – xy2 + y3
= x3 + y3 + (xy2 – xy2) + (xy2 – xy2)
= x3 + y3
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Bài 9 (trang 8 SGK Toán 8 Tập 1): Điền kết quả tính được vào bảng:
Giá trị của x và y | Giá trị biểu thức (x – y)(x2 + xy + y2) |
x = -10 ; y = 2 | |
x = -1 ; y = 0 | |
x = 2 ; y = -1 | |
x = -0,5 ; y = 1,25 |
Lời giải:
Ta có:
A = (x – y).(x2 + xy + y2)
= x.(x2 + xy + y2) + (–y).(x2 + xy + y2)
= x.x2 + x.xy + x.y2 + (–y).x2 + (–y).xy + (–y).y2
= x3 + x2y + xy2 – x2y – xy2 – y3
= x3 – y3 + (x2y – x2y) + (xy2 – xy2)
= x3 – y3.
Tại x = –10, y = 2 thì A = (–10)3 – 23 = –1000 – 8 = –1008
Tại x = –1 ; y = 0 thì A = (–1)3 – 03 = –1 – 0 = –1
Tại x = 2 ; y = –1 thì A = 23 – (–1)3 = 8 – (–1) = 9
Tại x = –0,5 ; y = 1,25 thì A = (–0,5)3 – 1,253 = –0,125 – 1,953125 = –2,078125
Vậy ta có bảng sau :
Giá trị của x và y | Giá trị biểu thức (x – y)(x2 + xy + y2) |
x = -10 ; y = 2 | -1008 |
x = -1 ; y = 0 | -1 |
x = 2 ; y = -1 | 9 |
x = -0,5 ; y = 1,25 | -2,078125 |
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
+ Để tính giá trị biểu thức khi cho trước các giá trị của biến, ta nên rút gọn biểu thức trước khi thay giá trị .
Bài 10 (trang 8 SGK Toán 8 Tập 1): Thực hiện phép tính :
Lời giải:
b) (x2 – 2xy + y2)(x – y)
= (x2 – 2xy + y2).x + (x2 – 2xy + y2).(–y)
= x2.x + (–2xy).x + y2.x + x2.(–y) + (–2xy).(–y) + y2.(–y)
= x3 – 2x2y + xy2 – x2y + 2xy2 – y3
= x3 – (2x2y + x2y) + (xy2 + 2xy2) – y3
= x3 – 3x2y + 3xy2 – y3.
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Bài 11 (trang 8 SGK Toán 8 Tập 1): Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7
Lời giải:
(x – 5)(2x + 3) – 2x(x – 3) + x + 7
= x.(2x + 3) + (–5).(2x + 3) – 2x.(x – 3) + x + 7
= (x.2x + x.3) + (–5).2x + (–5).3 – (2x.x + 2x.(–3)) + x + 7
= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7
= (2x2 – 2x2) + (3x – 10x + 6x + x) + 7 – 15
= – 8
Vậy với mọi giá trị của biến x, biểu thức luôn có giá trị bằng –8
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Bài 12 (trang 8 SGK Toán 8 Tập 1): Tính giá trị của biểu thức (x2 – 5)(x + 3) + (x + 4)(x – x2) trong mỗi trường hợp sau:
a) x = 0 ; b) x = 15 ; c) x = -15 ; d) x = 0,15
Lời giải:
Rút gọn biểu thức:
A = (x2 – 5)(x + 3) + (x + 4)(x – x2)
= x2.(x + 3) + (–5).(x + 3) + x.(x – x2) + 4.(x – x2)
= x2.x + x2.3 + (–5).x + (–5).3 + x.x + x.(–x2) + 4.x + 4.(–x2)
= x3 + 3x2 – 5x – 15 + x2 – x3 + 4x – 4x2
= (x3 – x3) + (3x2 + x2 – 4x2) + (4x – 5x) – 15
= –x – 15.
a) Nếu x = 0 thì A = –0 – 15 = –15
b) Nếu x = 15 thì A = –15 – 15 = –30
c) Nếu x = –15 thì A = –(–15) – 15 = 15 – 15 = 0
d) Nếu x = 0,15 thì A = –0,15 – 15 = –15,15
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
+ Để tính giá trị biểu thức khi cho trước các giá trị của biến, ta nên rút gọn biểu thức trước khi thay giá trị.
Bài 13 (trang 9 SGK Toán 8 Tập 1): Tìm x, biết:
(12x – 5)(4x – 1) + (3x – 7)(1 – 16x) = 81
Lời giải:
Rút gọn vế trái:
VT = (12x – 5)(4x – 1) + (3x – 7)(1 – 16x)
= 12x.(4x – 1) + (–5).(4x – 1) + 3x.(1 – 16x) + (–7).(1 – 16x)
= 12x.4x+ 12x.(–1) + (–5).4x + (–5).(–1) + 3x.1 + 3x.(–16x) + (–7).1 + (–7).(–16x)
= 48x2 – 12x – 20x + 5 + 3x – 48x2 – 7 + 112x
= (48x2 – 48x2) + (– 12x – 20x + 3x + 112x) + (5 – 7)
= 83x – 2
Vậy ta có:
83x – 2 = 81
83x = 81 + 2
83x = 83
x = 83 : 83
x = 1.
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Bài 14 (trang 9 SGK Toán 8 Tập 1): Tìm ba số tự nhiên chẵn liên tiếp, biết tích của hai số sau lớn hơn tích của hai số đầu là 192.
Lời giải:
Gọi 3 số chẵn liên tiếp là a, a + 2, a + 4 (a ≥ 0; a ∈ N; a là số chẵn)
Tích của hai số sau là (a + 2)(a + 4)
Tích của hai số đầu là a.(a + 2)
Theo đề bài ta có:
(a + 2)(a + 4) – a(a + 2) = 192
a.(a + 4) + 2.(a + 4) – a.(a + 2) = 192
a2 + 4a + 2a + 8 – a2 – 2a = 192
(a2 – a2) + (4a + 2a – 2a) + 8 = 192
4a + 8 = 192
4a = 192 – 8
4a = 184
a = 184 : 4
a = 46.
Vậy 3 số chẵn đó là 46, 48, 50.
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Bài 15 (trang 9 SGK Toán 8 Tập 1): Làm tính nhân
Lời giải:
Kiến thức áp dụng
+ Để nhân hai đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 8 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán Đại 8 và Toán Hình 8. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 8 khác nhau
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét