Bài 1 (trang 38 SGK Đại số 10): Tìm tập xác định của hàm số:
Lời giải:
a) có nghĩa khi 2x + 1 ≠ 0 ⇔ x ⇔ –1/2.
Vậy tập xác định của hàm là D = R {-1/2}.
b) xác định khi x2 + 2x – 3 ≠ 0.
Giải phương trình x2 + 2x - 3 = 0 ⇔ (x-1)(x+3) = 0 ⇔
Do đó x2 + 2x – 3 ≠ 0 khi x ≠ 1 và x ≠ -3.
Vậy tập xác định của hàm số là D = R {1;-3}
c) xác định khi
Vậy tập xác định của hàm số là
Bài 2 (trang 38 SGK Đại số 10): Cho hàm số
Tính giá trị của hàm số đó tại x = 3; x = -1; x = 2.
Lời giải:
- Ta có : x = 3 > 2 nên f(3) = 3 + 1 = 4.
- Ta có : x = -1 < 2 nên f(–1) = (-1)2 – 2 = –1.
- Ta có : x = 2 nên f(2) = 2 + 1 = 3.
Kiến thức áp dụng
+ Một hàm số có thể được cho bởi hai, ba hoặc nhiều công thức.
Bài 3 (trang 39 SGK Đại số 10): Cho hàm số y = 3x2 - 2x + 1. Các điểm sau có thuộc đồ thị của hàm số không ?
a) M(-1 ; 6)
b) N(1 ; 1)
c) P(0 ; 1)
Lời giải:
Tập xác định của hàm số y = f(x) = 3x2 – 2x + 1 là D = R
a) Tại x = –1 thì y = 3.( –1)2 – 2. (–1) + 1 = 3 + 2 + 1 = 6.
Vậy điểm M(–1; 6) thuộc đồ thị hàm số y = 3x2 – 2x + 1.
b) Tại x = 1 thì y = 3.12 – 2.1 + 1 = 3 – 2 + 1 = 2 ≠ 1.
Vậy N(1; 1) không thuộc đồ thị hàm số.
c) Tại x = 0 thì y = 3.02 – 2.0 + 1 = 1.
Vậy điểm P(0 ; 1) thuộc đồ thị hàm số.
Kiến thức áp dụng
Điểm A(x0;y0) thuộc đồ thị hàm số y = f(x) nếu y0 = f(x0).
(Kiến thức lớp 7).
Bài 4 (trang 39 SGK Đại số 10): Xét tính chẵn lẻ của các hàm số sau:
a) y = |x|;
b) y = (x + 2)2;
c) y = x3 + x;
d) y = x2 + x + 1.
Lời giải:
a) Đặt y = f(x) = |x|.
+ Tập xác định D = R nên với ∀ x ∈ D thì –x ∈ D.
+ f(–x) = |–x| = |x| = f(x).
Vậy hàm số y = |x| là hàm số chẵn.
b) Đặt y = f(x) = (x + 2)2.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ (x + 2)2 = f(x)
+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ – (x + 2)2 = –f(x).
Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.
c) Đặt y = f(x) = x3 + x.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)3 + (–x) = –x3 – x = – (x3 + x) = –f(x)
Vậy y = x3 + x là một hàm số lẻ.
d) Đặt y = f(x) = x2 + x + 1.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)
Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.
Kiến thức áp dụng
Cho hàm số y = f(x) với tập xác định D:
+ f(x) là hàm số chẵn nếu: với ∀x ∈ D thì –x ∈ D và f(–x) = f(x).
+ f(x) là hàm số lẻ nếu: với ∀x ∈ D thì –x ∈ D và f(–x) = –f(x).
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 10 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần hình học và đại số. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 10 khác nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét