1. Định nghĩa
Tam giác cân là tam giác có hai cạnh bằng nhau.
Ví dụ: Ta có tam giác cân ABC cân tại A (AB = AC). Ta gọi AB và AC là các cạnh bên, BC là cạnh đáy, ∠B và ∠C là các góc ở đáy, ∠A là góc ở đỉnh.
2. Tính chất
Trong tam giác cân, hai góc ở đáy bằng nhau.
Dấu hiệu nhận biết:
• Nếu một tam giác có hai cạnh bằng nhau thì tam giác đó là tam giác cân.
• Nếu một tam giác có hai góc bằng nhau thì tam giác đó là tam giác cân.
Định nghĩa tam giác vuông cân: Tam giác vuông cân là tam giác vuông có hai cạnh góc vuông bằng nhau.
Ví dụ: ΔABC vuông cân tại A
Tính chất: Mỗi góc nhọn của tam giác vuông cân bằng 45o
Ví dụ: ΔABC vuông cân tại A ⇒ ∠B = ∠C = 45o.
3. Tam giác đều
Định nghĩa: Tam giác đều là tam giác có ba cạnh bằng nhau: ΔABC đều ⇔ AB = BC = AC
Tính chất: Trong tam giác đều, mỗi góc bằng 60o: ΔABC đều ⇔ ∠A = ∠B = ∠C = 60o
Dấu hiệu nhận biết:
• Nếu tam giác có ba cạnh bằng nhau thì tam giác đó là tam giác đều.
• Nếu tam giác có ba góc bằng nhau thì tam giác đó là tam giác đều.
• Nếu một tam giác cân có một góc nhọn bằng 60o thì tam giác đó là tam giác đều.
Bài 1: Cho tam giác ABC cân tại A có ∠A = 50°
a) Tính ∠B, ∠C
b) Lấy điểm D thuộc AB, điểm E thuộc AC sao cho AD = AE. Chứng minh DE // BC
Hướng dẫn giải:
Bài 2: Cho tam giác ABC cân tại A và có , phân giác của góc B cắt AC tại D.
a) Tính các góc của tam giác ABC
b) Chứng minh DA = DB
Hướng dẫn giải:
Trả lời câu hỏi Toán 7 Tập 1 Bài 6 trang 126: Tìm các tam giác cân trên hình 112. Kể tên các cạnh bên, cạnh đáy, góc ở đáy, góc ở đỉnh của các tam giác cân đó.
Lời giải
Các tam giác cân trên hình 112:
-ΔADE cân tại A: có các cạnh bên là AD và AE; cạnh đáy: DE; góc D và góc E là hai góc ở đáy; góc A là góc ở đỉnh
-ΔABC cân tại A: có các cạnh bên là AB và AC; cạnh đáy: BC; góc B và góc C là hai góc ở đáy; góc A là góc ở đỉnh
-ΔAHC cân tại A: có các cạnh bên là AH và AC; cạnh đáy: HC; góc H và góc C là hai góc ở đáy; góc A là góc ở đỉnh
Trả lời câu hỏi Toán 7 Tập 1 Bài 6 trang 126: Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC ở D (hình 113). Hãy so sánh (ABD) ̂ = (ACD) ̂
Lời giải
-ΔABD và ΔACD có
AB = AC
∠(BAD) = ∠(CAD) (do AD là tia phân giác góc A)
AD chung
Nên ΔABD = ΔACD ( c.g.c)
⇒ ∠(ABD) = ∠(ACD) (hai góc tương ứng)
Trả lời câu hỏi Toán 7 Tập 1 Bài 6 trang 126: Tính số đo mỗi góc nhọn của một tam giác vuông cân
Lời giải
Giả sử ΔABC vuông cân tại A
∠A + ∠B + ∠C = 180o
Và ∠A = 90o; ∠B = ∠C
⇒ 2. ∠B = 180o – 90o = 90o
⇒∠B = ∠C = 90o:2 = 45o
Trả lời câu hỏi Toán 7 Tập 1 Bài 6 trang 126: Vẽ tam giác đều ABC (hình 115)
a) Vì sao ∠B = ∠C ; ∠C = ∠A ?
b) Tính số đo mỗi góc của tam giác ABC
Lời giải
a) ∠B = ∠C khi xét tam giác ABC cân tại A
∠C = ∠A khi xét tam giác ABC cân tại B
b) Tam giác ABC có 3 góc bằng nhau và bằng 180o/3 = 60o
Bài 46 (trang 127 SGK Toán 7 Tập 1): a) Dùng thước có chia xentimet và compa vẽ tam giác ABC cân ở B có cạnh đáy bằng 3cm, cạnh bên bằng 4cm.
b) Dùng thước có chia xentimet và compa vẽ tam giác đều ABC có cạnh bằng 3cm.
Lời giải:
a) Vẽ đoạn thẳng AC = 3cm.
- Trên cùng một nửa mặt phẳng bờ AC vẽ cung tròn tâm A bán kính 4cm và cung tròn C bán kính 4cm.
- Hai cung tròn trên cắt nhau tại B.
- Vẽ các đoạn thẳng AB, BC ta được tam giác ABC.
b) Vẽ đoạn thẳng AC = 3cm
- Trên cùng một nửa mặt phẳng bờ AC vẽ cung tròn tâm A bán kính 3cm và cung tròn C bán kính 3cm
- Hai cung tròn trên cắt nhau tại B
- Vẽ các đoạn thẳng AB, BC ta được tam giác ABC.
Bài 47 (trang 127 SGK Toán 7 Tập 1): Trong các tam giác trên các hình 116, 117, 118 tam giác nào là tam giác cân tam giác nào là tam giác đều ? Vì sao?
Lời giải:
- Hình 116
Ta có ΔABD cân vì AB = AD
ΔACE cân vì AC = AE
Do AB = AD , BC = DE nên AB + BC = AD + DE hay AC = AE
⇒ ΔACE cân
- Hình 117
Ta tính được
- Hình 118
* ΔOMN là tam giác đều vì ba cạnh bằng nhau OM = MN = NO
* ΔOMK cân tại M vì OM = MK
* ΔONP là tam giác cân tại N vì ON = NP
Bài 48 (trang 127 SGK Toán 7 Tập 1): Cắt một tấm bìa hình tam giác cân. Hãy gấp tấm bìa đó sao cho hai cạnh bên trùng nhau để kiểm tra rằng góc ở hai đáy bằng nhau ?.
Lời giải:
Các bước tiến hành.
- Cắt tấm bìa hình tam giác cân.
- Gấp tấm bìa sao cho hai cạnh bên trùng nhau.
- Quan sát phần cạnh đáy sau khi gấp lại chúng trùng nhau.
Vậy hai góc ở đáy của tam giác cân bằng nhau.
Bài 49 (trang 127 SGK Toán 7 Tập 1): a) Tính các góc ở đáy của một tam giác cân biết góc ở đỉnh bằng 40o.
b) Tính góc ở đỉnh của một tam giác cân biết góc ở đáy bằng 40o.
Lời giải:
a)
b)
Bài 50 (trang 127 SGK Toán 7 Tập 1): Hai thanh AB và AC của vì kèo một mái nhà thường bằng nhau và thường tạo với nhau một góc bằng.
a) 145o nếu là mái tôn.
b) 100o nếu mái là ngói.
Tính góc ABC trong từng trường hợp.
Lời giải:
Bài 51 (trang 128 SGK Toán 7 Tập 1): Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh AC, điểm E thuộc cạnh AB sao cho AD = AE
a) So sánh góc ABD và ACE
b) Gọi I là giao điểm của BD và CE. ΔIBC là tam giác gì ? Vì sao ?
Lời giải:
a) Xét ΔABD và ΔACE có:
AB = AC (gt)
Góc A chung
AD = AE (gt)
Nên ΔABD = ΔACE ( c.g.c)
Vậy ΔIBC cân tại I
Bài 52 (trang 128 SGK Toán 7 Tập 1): Cho góc xOy có số đo 120o điểm A thuộc tia phân giác của góc đó. Kẻ AB vuông góc với Ox, kẻ AC vuông góc với Oy. Tam giác ABC là tam giác gì ? Vì sao?
Lời giải:
Hai tam giác vuông ABO (góc B = 90º) và ACO (góc C = 90º) có :
⇒ ΔABO = ΔACO (cạnh huyền – góc nhọn)
⇒ AB = AC (hai cạnh tương ứng) ⇒ ΔABC cân.
Tam giác cân ABC có góc A = 60º nên là tam giác đều.
Kiến thức áp dụng
+ Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông khác thì hai tam giác đó bằng nhau.
+ Tam giác cân có 1 góc bằng 60º là tam giác đều.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 7 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán Đại 7 và Toán Hình 7. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 7 khác nhau
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét