1. Hệ thức vi – ét
Phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có nghiệm dù đó là hai nghiệm phân biệt hay nghiệm kép thì ta đều có thể viết được dưới dạng:
Khi đó nếu x1, x2 là hai nghiệm của phương trình ax2 + bx + c = 0 (a ≠ 0) thì ta có:
2. Ứng dụng của định lý Vi – ét
a) Tính nhẩm nghiệm
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm là x1 = 1 và nghiệm còn lại là x2 = c/a
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a - b + c = 0 thì phương trình có một nghiệm là x1 = -1 và nghiệm còn lại là x2 = -c/a
b) Tìm hai số khi biết tổng và tích.
+ Nếu hai số có tổng bằng S và tích bằng P thì hai số đó là nghiệm của phương trình bậc hai x2 - Sx + P = 0
+ Điều kiện để có hai số đó là S2 - 4P ≥ 0
3. Ví dụ cụ thể
Câu 1: Cho phương trình x2 - 3x + 2 = 0. Tính giá trị của biểu thức P = 2(x1 + x2) - x1.x2
Hướng dẫn:
Ta có: Δ = (-3)2 - 4.1.2 = 1 ⇒ phương trình có hai nghiệm phân biệt x1, x2.
Áp dụng hệ thức Vi – ét ta có:
Khi đó P = 2(x1 + x2) - x1.x2 = 2.3 - 2 = 4. Vậy P = 4
Câu 2: Tìm hai số khi biết tổng hai số đó là S = 5 và tích của hai số đó là P = 6 ?
Hướng dẫn:
Gọi x1, x2 là hai số cần tìm, khi đó x1, x2 là nghiệm của phương trình x2 - 5x + 6 = 0
Ta có Δ = (-5)2 - 4.1.6 = 25 - 24 = 1 > 0
Khi đó phương trình có hai nghiệm là:
Vậy hai số cần tìm là 3 và 2.
Câu 1: Tìm hai số biết tổng của chúng bằng 5 và tích của chúng bằng 6.
Câu 2: Tìm hai số biết hiệu của chúng bằng 11 và tích của chúng bằng 60.
Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 50: Hãy tính x1 + x2, x1x2.
Lời giải
Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 51: Cho phương trình 2x2 – 5x + 3 = 0.
a) Xác định các hệ số a, b, c rồi tính a + b + c.
b) Chứng tỏ rằng x1 = 1 là một nghiệm của phương trình.
c) Dùng định lý Vi-ét để tìm x2.
Lời giải
a) a = 2; b = -5; c = 3
⇒ a + b + c = 2 - 5 + 3 = 0
b) Thay x = 1 vào phương trình ta được:
2.12 - 5.1 + 3 = 0
Vậy x = 1 là một nghiệm của phương trình
c) Theo định lí Vi-et ta có:
x1.x2 = c/a = 3/2 ⇒ x2 = 3/2
Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 51: Cho phương trình 3x2 + 7x + 4 = 0.
a) Xác định các hệ số a, b, c rồi tính a - b + c.
b) Chứng tỏ rằng x1 = -1 là một nghiệm của phương trình.
c) Tìm nghiệm x2.
Lời giải
a) a = 3; b = 7; c = 4
⇒ a + b + c = 3 - 7 + 4 = 0
b) Thay x = -1 vào phương trình ta được:
3.(-1)2 + 7.(-1) + 4 = 0
Vậy x = - 1 là một nghiệm của phương trình
c) Theo định lí Vi-et ta có:
x1.x2 = c/a = 4/3 ⇒ x2 = 4/3:(-1) = -4/3
Bài 25 (trang 52 SGK Toán 9 Tập 2): Đối với mỗi phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chỗ trống (...):
a) 2x2 – 17x + 1 = 0;
Δ = …; x1 + x2 = …; x1.x2 = …;
b) 5x2 – x – 35 = 0;
Δ = …; x1 + x2 = …; x1.x2 = …;
c) 8x2 – x + 1 = 0 ;
Δ = …; x1 + x2 = …; x1.x2 = …;
d) 25x2 + 10x + 1 = 0 ;
Δ = …; x1 + x2 = …; x1.x2 = …;
Lời giải
a) 2x2 – 17x + 1 = 0
Có a = 2; b = -17; c = 1
Δ = b2 – 4ac = (-17)2 – 4.2.1 = 281 > 0.
Theo hệ thức Vi-et: phương trình có hai nghiệm x1; x2 thỏa mãn:
x1 + x2 = -b/a = 17/2
x1.x2 = c/a = 1/2.
b) 5x2 – x – 35 = 0
Có a = 5 ; b = -1 ; c = -35 ;
Δ = b2 – 4ac = (-1)2 – 4.5.(-35) = 701 > 0
Theo hệ thức Vi-et, phương trình có hai nghiệm x1; x2 thỏa mãn:
x1 + x2 = -b/a = 1/5
x1.x2 = c/a = -35/5 = -7.
c) 8x2 – x + 1 = 0
Có a = 8 ; b = -1 ; c = 1
Δ = b2 – 4ac = (-1)2 – 4.8.1 = -31 < 0
Phương trình vô nghiệm nên không tồn tại x1 ; x2.
d) 25x2 + 10x + 1 = 0
Có a = 25 ; b = 10 ; c = 1
Δ = b2 – 4ac = 102 – 4.25.1 = 0
Khi đó theo hệ thức Vi-et có:
x1 + x2 = -b/a = -10/25 = -2/5
x1.x2 = c/a = 1/25.
Kiến thức áp dụng
Phương trình bậc hai ax2 + bx + c = 0, có Δ = b2 – 4ac.
Khi Δ ≥ 0, phương trình có hai nghiệm x1; x2 thỏa mãn hệ thức Vi-et:
Lưu ý: Trước khi áp dụng hệ thức Vi-et, bắt buộc phải kiểm tra Δ xem phương trình có nghiệm hay không.
Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 52: Tính nhẩm nghiệm của các phương trình:
a) -5x2 + 3x + 2 = 0;
b) 2004x2 + 2005x + 1 = 0.
Lời giải
a) -5x2 + 3x + 2 = 0;
Nhận thấy phương trình có a + b + c = 0 nên phương trình có 2 nghiệm
x1 = 1; x2 = c/a = (-2)/5
b) 2004x2 + 2005x + 1 = 0
Nhận thấy phương trình có a - b + c = 0 nên phương trình có 2 nghiệm
x1 = -1; x2 = -c/a = (-1)/2004
Trả lời câu hỏi Toán 9 Tập 2 Bài 6 trang 52: Tìm hai số biết tổng của chúng bằng 1, tích của chúng bằng 5.
Lời giải
Hai số cần tìm là nghiệm của phương trình x2 - x + 5 = 0
Δ = b2 - 4ac = (-1)2 - 4.1.5 = -19 < 0
⇒ phương trình vô nghiêm
Vậy không tồn tại 2 số có tổng bằng 1 và tích bằng 5
Bài 26 (trang 53 SGK Toán 9 Tập 2): Dùng điều kiện a + b + c = 0 hoặc a – b + c = 0 để tính nhẩm nghiệm của mỗi phương trình sau:
a) 35x2 – 37x + 2 = 0;
b) 7x2 + 500x – 507 = 0;
c) x2 – 49x – 50 = 0;
d) 4321x2 + 21x – 4300 = 0.
Lời giải
a) Phương trình 35x2 – 37x + 2 = 0
Có a = 35; b = -37; c = 2 ⇒ a + b + c = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = c/a = 2/35.
b) Phương trình 7x2 + 500x – 507 = 0
Có a = 7; b = 500; c = -507 ⇒ a + b + c = 7 + 500 – 507 = 0
⇒ Phương trình có nghiệm x1 = 1; x2 = c/a = -507/7.
c) Phương trình x2 – 49x – 50 = 0
Có a = 1; b = -49; c = -50 ⇒ a – b + c = 1 – (-49) – 50 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = -c/a = 50.
d) Phương trình 4321x2 + 21x – 4300 = 0
Có a = 4321; b = 21; c = -4300 ⇒ a – b + c = 4321 – 21 – 4300 = 0
⇒ Phương trình có nghiệm x1 = -1; x2 = -c/a = 4300/4321.
Kiến thức áp dụng
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a + b + c = 0 thì phương trình có một nghiệm x1 = 1; nghiệm còn lại x2 = c/a.
+ Nếu phương trình ax2 + bx + c = 0 (a ≠ 0) có a – b + c = 0 thì phương trình có một nghiệm x1 = -1; nghiệm còn lại x2 = -c/a.
Bài 27 (trang 53 SGK Toán 9 Tập 2): Dùng hệ thức Vi-et để tính nhẩm các nghiệm của phương trình.
a) x2 – 7x + 12 = 0;
b) x2 + 7x + 12 = 0.
Lời giải
a) x2 – 7x + 12 = 0
Có a = 1; b = -7; c = 12
⇒ Δ = b2 – 4ac = (-7)2 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là 3 và 4.
b) x2 + 7x + 12 = 0
Có a = 1; b = 7; c = 12
⇒ Δ = b2 – 4ac = 72 – 4.1.12 = 1 > 0
⇒ Phương trình có hai nghiệm phân biệt x1; x2 thỏa mãn:
Vậy dễ dàng nhận thấy phương trình có hai nghiệm là -3 và -4.
Kiến thức áp dụng
Phương trình bậc hai ax2 + bx + c = 0, có Δ = b2 – 4ac.
Khi Δ ≥ 0, phương trình có hai nghiệm x1; x2 thỏa mãn hệ thức Vi-et:
Lưu ý: Trước khi áp dụng hệ thức Vi-et, bắt buộc phải kiểm tra Δ xem phương trình có nghiệm hay không.
Bài 28 (trang 53 SGK Toán 9 Tập 2): Tìm hai số u và v trong mỗi trường hợp sau:
a) u + v = 32 , uv = 231
b) u + v = -8, uv = -105
c) u + v = 2, uv = 9
Lời giải
a) S = 32; P = 231 ⇒ S2 – 4P = 322 – 4.231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x2 – 32x + 231 = 0.
Ta có: Δ = (-32)2 – 4.231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
b) S = -8; P = -105 ⇒ S2 – 4P = (-8)2 – 4.(-105) = 484 > 0
⇒ u và v là hai nghiệm của phương trình: x2 + 8x – 105 = 0
Ta có: Δ’ = 42 – 1.(-105) = 121 > 0
Phương trình có hai nghiệm:
Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.
c) S = 2 ; P = 9 ⇒ S2 – 4P = 22 – 4.9 = -32 < 0
⇒ Không tồn tại u và v thỏa mãn.
Kiến thức áp dụng
Nếu hai số có tổng bằng S, tích bằng P thì hai số đó là hai nghiệm của phương trình : x2 – S.x + P = 0.
Điều kiện để có hai số đó là : S2 – 4P ≥ 0.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 9 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán hình 9 và Toán đại 9. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 9 khác nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét