1. Định nghĩa
Hình bình hành là tứ giác có các cạnh đối song song
Tứ giác ABCD là hình bình hành ⇔
Chú ý đặc biệt: Hình bình hành là một hình thang đặc biệt (hình bình hành là hình thang có hai cạnh bên song song)
2. Tính chất hình bình hành
Định lí: Trong hình bình hành:
+ Các cạnh đối bằng nhau.
+ Các góc đối bằng nhau.
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
3. Dấu hiệu nhận biết hình bình hành
+ Tứ giác có các cạnh đối song song là hình bình hành.
+ Tứ giác có các cạnh đối bằng nhau là hình bình hành.
+ Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
+ Tứ giác có các góc đối bằng nhau là hình bình hành.
+ Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.
Ví dụ: Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. Chứng minh BE = DF và ABEˆ = CDFˆ .
Hướng dẫn:
Xét tứ giác BEDF có
⇒ BEDF là hình bình hành
⇒ BE = DF (hai cạnh đối song song và bằng nhau)
Ta có: ABCD là hình bình hành nên BADˆ = BCDˆ ( 1 )
BEDF là hình bình hành nên BEDˆ = DFBˆ ( 2 )
Mà
Từ ( 2 ) và ( 3 ) ⇒ AEBˆ = DFCˆ ( 4 )
Xét Δ ABE có BAEˆ + AEBˆ + ABEˆ = 1800 (5)
Xét Δ DFC có DFCˆ + FCDˆ + FDCˆ = 1800 (5)
Từ ( 1 ), ( 4 ), ( 5 ) ⇒ ABEˆ = CDFˆ (đpcm)
Bài 1: Cho hình bình hành ABCD có H, K lần lượt là các chân đường cao kẻ từ đỉnh A,C xuống BD.
a) Chứng minh AHCK là hình bình hành.
b) Gọi O là trung điểm của HK. Chứng minh A, O, C thẳng hàng.
Hướng dẫn:
a) Từ giả thiết ta có: ⇒ AH//CK. ( 1 )
Áp dụng tính chất về cạnh của hình bình hành và tính chất của các góc so le ta có:
⇒ Δ ADH = Δ CBK
(trường hợp cạnh huyền – góc nhọn)
⇒ AH = CK (cạnh tương tứng bằng nhau) ( 2 )
Từ ( 1 ) và ( 2 ) ta có tứ giác AHCK có cặp cạnh đối song song và bằng nhau là hình bình hành.
b) Áp dụng tính chất đường chéo của hình bình hành AHCK
Hình bình hành AHCK có hai đường chéo AC và HK cắt nhau tại trung điểm mỗi đường
Do O là trung điểm của HK nên O cũng là trung điểm của AC
⇒ A, O, C thẳng hàng.
Bài 2: Cho hình bình hành ABCD. Gọi I và K lần lượt là trung điểm của AB, CD. Đường chéo BD cắt AK, AI lần lượt tại M, N. Chứng minh rằng:
a) AK//CI
b) DM = MN = NB
Hướng dẫn:
a) Áp dụng định nghĩa, tính chất và theo giả thiết của hình bình hành, ta có:
Tứ giác AICK có cặp cạnh đối song song và bằng nhau nên AICK là hình bình hành.
b) Theo câu a, AICK là hình bình hành
⇒ AK//CI. Khi đó , ta có:
Mặt khác, ta lại có: AI = IB, CK = KD theo giải thiết:
ÁP dụng định lý đường trung bình vào tam giác ABM, DCN ta có:
⇒ DM = MN = NB
Trả lời câu hỏi Toán 8 Tập 1 Bài 7 trang 90: Các cạnh đối của tứ giác ABCD trên hình 66 có gì đặc biệt ?
Lời giải
Các cạnh đối của tứ giác ABCD bằng nhau và song song với nhau
(Nhận xét trang 70: Nếu một hình thang có hai cạnh bên song song thì hai cạnh bên bằng nhau, hai cạnh đáy bằng nhau)
Trả lời câu hỏi Toán 8 Tập 1 Bài 7 trang 90: Cho hình bình hành ABCD (h.67). Hãy thử phát hiện tính chất về cạnh, về góc, về đường chéo của hình bình hành đó.
Lời giải
- Các cạnh đối bằng nhau
- Các góc đối bằng nhau
- Hai đường chéo cắt nhau tại trung điểm mỗi đường
Trả lời câu hỏi Toán 8 Tập 1 Bài 7 trang 92: Trong các tứ giác ở hình 70, tứ giác nào là hình bình hành? Vì sao ?
Lời giải
ABCD là hình bình hình vì có các cạnh đối bằng nhau
EFGH là hình bình hành vì có các góc đối bằng nhau
PQRS là hình bình hành vì có hai đường chéo cắt nhau tại trung điểm mỗi đường
XYUV là hình bình hành vì có XV = YU và XV // YU
Bài 43 (trang 92 SGK Toán 8 Tập 1): Các tứ giác ABCD, EFGH, MNPQ trên giấy kẻ ô vuông ở hình 71 có là hình bình hành hay không?
Lời giải:
Cả ba tứ giác là hình bình hành
- Tứ giác ABCD là hình bình hành vì có AB // CD và AB = CD = 3 (dấu hiệu nhận biết 3)
- Tứ giác EFGH là hình bình hành vì có EH // FG và EH = FG = 3 (dấu hiệu nhận biết 3)
- Tứ giác MNPQ là hình bình hành vì có MN = PQ và MQ = NP (dấu hiệu nhận biết 2)
(Chú ý:
- Với các tứ giác ABCD, EFGH còn có thể nhận biết là hình bình hành bằng dấu hiệu nhận biết 2.
- Với tứ giác MNPQ còn có thể nhận biết là hình bình hành bằng dấu hiệu nhận biết 5.)
Kiến thức áp dụng
Dấu hiệu nhận biết hình bình hành:
Tứ giác ABCD là hình bình hành nếu thỏa mãn một trong các dấu hiệu sau đây:
1) AB // CD và AD // BC.
2) AB = CD và AD = BC.
3) AB // CD và AB = CD.
4) Â = Ĉ và B̂ = D̂
5) OA = OC và OB = OD (Với O = AC ∩ BD)
Bài 44 (trang 92 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. Chứng minh rằng BE = DF
Lời giải:
Cách 1:
+ ABCD là hình bình hành ⇒ AB = CD, AD = BC, Â = Ĉ.
+ E là trung điểm của AD ⇒ AE = AD/2
F là trung điểm của BC ⇒ CF = BC/2
Mà AD = BC (cmt) ⇒ AE = CF.
+ Xét ΔAEB và ΔCFD có: AB = CD, Â = Ĉ, AE = CF (cmt)
⇒ ΔAEB = ΔCFD (c.g.c)
⇒ EB = DF.
Cách 2:
ABCD là hình bình hành ⇒ AD//BC và AD = BC.
+ AD // BC ⇒ DE // BF
+ E là trung điểm của AD ⇒ DE = AD/2
F là trung điểm của BC ⇒ BF = BC/2
Mà AD = BC ⇒ DE = BF.
+ Tứ giác BEDF có:
DE // BF và DE = BF
⇒ BEDF là hình bình hành
⇒ BE = DF.
Kiến thức áp dụng
- Tính chất của hình bình hành:
+ Hai cạnh đối song song và bằng nhau
+ Hai góc đối bằng nhau.
ABCD là hình bình hành
- Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành
Tứ giác ABCD có: AB = CD, AD // CD ⇒ ABCD là hình bình hành
Bài 45 (trang 92 SGK Toán 8 Tập 1): Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB ở E, tia phân giác của góc B cắt CD ở F.
a) Chứng minh rằng DE // BF
b) Tứ giác DEBF là hình gì? Vì sao?
Lời giải:
a) Ta có:
+ ABCD là hình bình hành ⇒ AB // CD ⇒ (Hai góc đồng vị) (1)
+ DE là tia phân giác của góc D
Mà hai góc này ở vị trí đồng vị ⇒ DE // BF (đpcm)
b) Tứ giác DEBF có:
DE // BF (chứng minh ở câu a)
BE // DF (vì AB // CD)
⇒ DEBF là hình bình hành.
Kiến thức áp dụng
+ Hình bình hành có các cặp cạnh đối song song.
Tứ giác có các cặp cạnh đối song song là hình bình hành
ABCD là hình bình hành ⇔ AB // CD và AD//BC.
+ Hình bình hành có các góc đối bằng nhau.
ABCD là hình bình hành ⇒ Â = Ĉ và B̂ = D̂
Bài 46 (trang 92 SGK Toán 8 Tập 1): Các câu sau đúng hay sai?
a) Hình thang có hai cạnh đáy bằng nhau là hình bình hành
b) Hình thang có hai cạnh bên song song là hình bình hành
c) Tứ giác có hai cạnh đối bằng nhau là hình bình hành
d) Hình thang có hai cạnh bên bằng nhau là hình bình hành
Lời giải:
a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bằng nhau nên là hình bình hành theo dấu hiệu nhận biết 5
b) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa)
c) Sai.
Ví dụ tứ giác ABCD ở dưới có AB = CD nhưng không phải hình bình hành.
d) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.
Bài 46 (trang 92 SGK Toán 8 Tập 1): Các câu sau đúng hay sai?
a) Hình thang có hai cạnh đáy bằng nhau là hình bình hành
b) Hình thang có hai cạnh bên song song là hình bình hành
c) Tứ giác có hai cạnh đối bằng nhau là hình bình hành
d) Hình thang có hai cạnh bên bằng nhau là hình bình hành
Lời giải:
a) Đúng, vì hình thang có hai đáy song song lại có thêm hai cạnh đáy bằng nhau nên là hình bình hành theo dấu hiệu nhận biết 5
b) Đúng, vì khi đó ta được tứ giác có các cạnh đối song song là hình bình hành (định nghĩa)
c) Sai.
Ví dụ tứ giác ABCD ở dưới có AB = CD nhưng không phải hình bình hành.
d) Sai, vì hình thang cân có hai cạnh bên bằng nhau nhưng nó không phải là hình bình hành.
Bài 48 (trang 93 SGK Toán 8 Tập 1): Tứ giác ABCD có E, F , G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?
Lời giải:
+ E là trung điểm AB, F là trung điểm BC
⇒ EF là đường trung bình của tam giác ABC
⇒ EF // AC và EF = AC/2
+ H là trung điểm AD, G là trung điểm CD
⇒ HG là đường trung bình của tam giác ACD
⇒ HG // AC và HG = AC/2.
+ Ta có:
EF //AC, HG//AC ⇒ EF // HG.
EF = AC/2; HG = AC/2 ⇒ EF = HG
⇒ tứ giác EFGH là hình bình hành.
Kiến thức áp dụng
+ Đường trung bình là đoạn thẳng nối hai trung điểm của hai cạnh trong tam giác.
Đường trung bình song song và bằng một nửa cạnh còn lại.
ΔABC, AD = DB, AE = EC ⇒ DE // BC và DE = BC/2.
+ Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành (Dấu hiệu nhận biết 3)
ABCD có : AB // CD và AB = CD
⇒ ABCD là hình bình hành.
Bài 49 (trang 93 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Gọi I, K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự ở M và N. Chứng minh rằng:
a) AI // CK
b) DM = MN = NB
Lời giải:
a) + K là trung điểm của AB ⇒ AK = AB/2.
+ I là trung điểm của CD ⇒ CI = CD/2.
+ ABCD là hình bình hành
⇒ AB // CD hay AK // CI
và AB = CD ⇒ AB/2 = CD/2 hay AK = CI
+ Tứ giác AKCI có AK // CI và AK = CI
⇒ AKCI là hình bình hành.
b) + AKCI là hình bình hành
⇒ AI//KC hay MI//NC.
ΔDNC có: DI = IC, IM // NC ⇒ DM = MN (1)
+ AI // KC hay KN//AM
ΔBAM có: AK = KB, KN//AM ⇒ MN = NB (2)
Từ (1) và (2) suy ra DM = MN = NB.
Kiến thức áp dụng
+ Hình bình hành có hai cạnh đối song song.
+ Tứ giác có hai cạnh đối song song và bằng nhau là hình bình hành.
+ Đường thẳng đi qua trung điểm của một cạnh và song song với cạnh thứ hai thì đi qua trung điểm của cạnh còn lại.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 8 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán Đại 8 và Toán Hình 8. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 8 khác nhau
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét