1. Hình trụ.
Cho hình trụ có bán kính đáy R và chiều cao h.
+ Diện tích xung quanh: Sxq = 2πRh
+ Diện tích toàn phần: Stp = 2πRh + 2πR2
+ Thể tích: V = πR2h
2. Hình nón – Hình nón cụt
a) Hình nón
Đặt AC = l; l là đường sinh
Cho hình nón có bán kính đáy R và đường sinh l, chiều cao h.
+ Diện tích xung quanh: Sxq = πRl
+ Diện tích toàn phần: Stp = πRl + πR2
+ Thể tích:
b) Hình nón cụt
Cho hình nón cụt có các bán kính đáy R và r, chiều cao h, đường sinh l.
+ Diện tích xung qaunh: Sxq = π(R + r)l
+ Thể tích:
3. Hình cầu
Cho hình cầu bán kính R.
+ Diện tích mặt cầu: S = 4πR2
+ Thể tích hình cầu:
Câu 1: Một hình trụ có bán kính đáy bằng 1/4 đường cao. Khi cắt hình trụ này bằng một mặt phẳng đi qua trục thì mặt cắt là một hình chữ nhật có diện tích là 50cm2. Tính diện tích xung quanh và thể tích hình trụ.
Câu 2: Tính diện tích xung quanh và diện tích toàn phần của hình sau
Câu 3: Hình chữ nhật ABCD có AB = a, BC = 3a . Quay hình chữ nhật quanh cạnh AB thì được thể tích V1, quay quanh cạnh BC thì được thể tích V2. Tỉ số thể tích giữa V1 và V2 là?
Câu 4: Cho hình nón như hình bên:
Biết rằng đáy là hình tròn có bán kính bằng 3cm, đường sinh có độ dài là 5cm. Hãy tính diện tích xung quanh, diện tích toàn phần và thể tích của hình nón đó.
Câu 5: Cho hình nón cụt như hình vẽ
Biết rằng bán kính của đáy nhỏ là r = 3cm, bán kính của đáy lớn là R = 6cm, độ dài AB = 4cm. Hãy tính diện tích xung quanh và thể tích của hình nón cụt
Câu 6: Khi bán kính của một mặt cầu tăng lên 3/2 lần thì diện tích và thể tích thay đổi như thế nào?
Câu 7: Giả sử trái cam có hình tương tự như mặt cầu, bạn Lan cắt trái cam làm đôi và tiến hành đo đường kính của nửa trái cam vừa cắt, bạn đo được bán kính tính cả vỏ cam là 2,5cm, biết vỏ cam dày 3mm. Hãy tính thể tích thực của quả cam đó.
Câu 8: Mô tả hình dưới đây được tạo bởi một hình nón có đường sinh bằng 13cm, bán kính là 5cm và một nửa mặt cầu. Hãy tính thể tích khối hình
Câu 9: Hình bên mô tả chiếc nón của một chú hề được tạo bởi hình chóp và hai đường tròn đồng tâm. Biết rằng hình tròn nhỏ bỏ trống để chú hề có thể đội được nón.
Cho AB = 10cm, OB = 6cm, OC = 9cm. Tính diện tích để làm chiếc nón ấy
Câu 10: Mọt hình nón được một mặt phẳng cắt ngang song song với đáy tại trung điểm của đường cao, hình nón được chia ra làm thành một hình nón cụt và một hình nón. Tính tỷ lệ của hình nón mới với hình nón cụt vừa tạo ra?
Câu 11: Hình bên là hình được ghép bởi một hình nón và một hình trụ, để hai hình này có thể tích bằng nhau thì chiều cao của hình nón phải bằng bao nhiêu lần chiều cao của hình trụ?
Bài 38 (trang 129 SGK Toán 9 Tập 2): Hãy tính thể tích , diện tích bề mặt một chi tiết máy theo kích thước đã cho trên hình 114.
Hình 114
Lời giải
Thể tích phần cần tính gồm:
- Thể tích hình trụ (một đáy) đường kính đáy 11cm, chiều cao 2cm (V1).
- Thể tích hình trụ (một đáy) đường kính đáy 6cm, chiều cao 7cm (V2).
Bài 39 (trang 129 SGK Toán 9 tập 2): Một hình chữ nhật ABCD có AB > AD, diện tích và chu vi của nó theo thứ tự là 2a2 và 6a. Cho hình vẽ quay xung quanh cạnh AB, ta được một hình trụ.
Tính diện tích xung quanh và thể tích của hình trụ này.
Lời giải
Bài 40 (trang 129 SGK Toán 9 Tập 2): Hãy tính diện tích toàn phần của các hình tương ứng theo các kích thước đã cho trên hình 115.
Hình 115
Lời giải
a) Hình nón có bán kính đáy r = 2,5m, đường sinh l = 5,6m
⇒ Diện tích đáy: Sđ = π.r2 = 6,25π (m2)
⇒ Diện tích xung quanh: Sxq = π.r.l = 14π (m2)
⇒ Diện tích toàn phần hình nón: Stp = Sđ + Sxq = 20,25π (m2)
b) Hình nón có bán kính đáy r = 3,6m; đường sinh l = 4,8m
⇒ Diện tích đáy: Sđ = π.r2 = 12,96π (m2)
⇒ Diện tích xung quanh: Sxq = π.r.l = 17,28π (m2)
⇒ Diện tích toàn phần hình nón: Stp = Sđ + Sxq = 30,24π (m2).
Kiến thức áp dụng
Hình nón có bán kính đáy r, đường sinh l có:
+ Diện tích xung quanh: Sxq = π.r.l
+ Diện tích toàn phần: Stp = Sxq + Sđ.
Bài 41 (trang 129 SGK Toán 9 Tập 2): Cho ba điểm A, O, B thẳng hàng theo thứ tự đó, OA = a, OB = b (a,b cùng đơn vị: cm).
Qua A và B vẽ theo thứ tự các tia Ax và By cùng vuông góc với AB và cùng phía với AB. Qua O vẽ hai tia vuông góc với nhau và cắt Ax ở C, By ở D (xem hình 116).
a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.
b) Tính diện tích hình thang ABCD khi
c) Với cho hình vẽ quay xung quanh AB. Tính tỉ số thể tích các hình do các tam giác AOC và BOD tạo thành.
Lời giải
c) Khi quay hình vẽ xung quanh cạnh AB: ΔAOC tạo nên hình nón, bán kính đáy là AC, chiều cao AO; ΔBOD tạo nên hình nón, bán kính đáy BD, chiều cao OB.
Bài 42 (trang 130 SGK Toán 9 Tập 2): Hãy tính thể tích các hình dưới đây theo kích thước đã cho (h.117).
Hình 117
Lời giải
a) Thể tích của hình cần tính gồm:
Một hình trụ đường kính đáy 14cm chiều cao 5,8cm (V1):
Một hình nón đường kính đáy 14cm chiều cao 8,1cm (V2)
Thể tích hình cần tính:
b) Thể tích cần tính là một hình nón cụt, chiều cao 8,2cm; bán kính đường tròn của đáy trên và đáy dưới theo thứ tự là 3,8cm và 7,6cm. Cách tính là lấy thể tích hình nón lớn trừ đi thể tích hình nón bé.
Bài 43 (trang 130 SGK Toán 9 tập 2): Hãy tính thể tích các hình dưới đây theo kích thước đã cho (h.118) (đơn vị : cm).
Hình 118
Lời giải
Thể tích hình cần tính là:
Bài 44 (trang 130-131 SGK Toán 9 Tập 2): Cho hình vuông ABCD nội tiếp đường tròn tâm O, bán kính R và GEF là tam giác đều nội tiếp đường tròn đó, EF là dây song song với AB (h.119). Cho hình đó quay quanh trục GO. Chứng minh rằng:
a) Bình phương thể tích của hình trụ sinh ra bởi hình vuông bằng tích của thể tích hình cầu sinh ra bởi hình tròn và thể tích hình nón do tam giác đều sinh ra.
b) Bình phương diện tích toàn phần của hình trụ bằng tích của diện tích hình cầu và diện tích toàn phần của hình nón.
Hình 119
Lời giải
Dựng GH vuông góc EF.
Bài 45 (trang 131 SGK Toán 9 Tập 2): Hình 120 mô tả một hình cầu được đặt khít vào trong một hình trụ, các kích thước cho trên hình vẽ.
Hãy tính:
a) Thể tích hình cầu.
b) Thể tích hình trụ.
c) Hiệu giữa thể tích hình trụ và thể tích hình cầu.
d) Thể tích của một hình nón có bán kính đường tròn đáy là r cm và chiều cao 2r cm.
e) Từ các kết quả a), b), c), d) hãy tìm mối liên hệ giữa chúng.
Hình 120
Lời giải
a) Hình cầu bán kính r, vậy thể tích của nó là
b) Hình trụ có bán kính đáy bằng r và chiều cao bằng 2r
Vậy thể tích của nó là: V1 = πr2.2r = 2πr3
c) Thể tích hình trụ trừ đi thể tích hình cầu là:
d) Thể tích hình nón có bán kính đáy r, chiều cao 2r
e) Từ các kết quả trên suy ra: Thể tích hình nón "nội tiếp" trong một hình trụ thì bằng thể tích hình trụ trừ đi thể tích hình cầu nội tiếp trong hình trụ ấy.
Hoặc: Thể tích hình trụ bằng tổng thể tích hình nón và hình cầu nội tiếp hình trụ.
Soanbaitap.com gửi đến các bạn học sinh đầy đủ những bài giải toán 9 có trong sách giáo khoa tập 1 và tập 2, đầy đủ cả phần Toán hình 9 và Toán đại 9. Tổng hợp các công thức, giải bài tập toán và cách giải toán lớp 9 khác nhau.
#soanbaitap
Không có nhận xét nào:
Đăng nhận xét